FSUIPC7

For
Advanced Users

FSUIPC Versions 7.3.16, January 2023

For changes since the previous version, please review the History document

Contents

Options in the FSUIPCT.INI file......oueiieee e 3
Parameters to help some add-ons operate COrrectly..........oocoviiiiiiniiinii e 3
General Weather OPHIONS........oi.iii et e e e e 4
Other general USEI OPLIONS.oiiiiiiiiiie ettt e e e e e e e e s e e e e e nabr e e e e e s e e e s eeeaeeaaaaaeeas 5
Less used teChniCal OPLIONS.........civiiiii e e e e e 8
AUTOSAVE: INI-file only OPtioNS.........veiiiiiiiiiiiie e 11
(o Te o TaTo I 7= Tor1 1 13U PPRRRIN 12
Yo g1) to] g = Tod 111 =TT PSPPSR 14
[0}V 1\ =10 1= TP 15
o o) 11 L= T 15
BUHON Programming.........coooiiiiie e e e 16
Format of button definitions............cooiiiiii e 17
Sequences, combinations and MIXTUMES.oooiiiiiiii e 20
Compound BUON CONTIOIS.......cciiiiiei e e e e e e e e aaaaaaes 21
Adding offSet CONAItIONS.......cuiiiiei e e e e e eeeraaeeees 23
Errors in button parameters....... ..o 24
Keyboard programming........c..eeee e iiieeee e ee et e et e e e st e e e e s sbbeeeeessanbeeeeeeeaneene 25
Format of Key definitions..........oooiiiiiii e 25
Errors in KeY Parameters.ooiiii i 26
Additional “MSFS” controls added by FSUIPC................cooiiiiiiiiieeeeee e 27
Adding Simulator variables (simvars) to FSUIPC offsets........ccccooeiiiiiiiiiiiii 34
=Tl fo oo] o 11 o] L= PSR 35
T T LTS 1V = Vo o SN 36
Gauge local variable access (L:vars), by macro........ccccocceeieiiiiiiiiiiiiiieee e 36
Macros to activate HVars..........ooo i 38
Add-0N CUSTOM EVENLS.......eeiie et e e 38
Automatic running of Macros or Lua plUugins...........oooeiiiiiiiiiiiiiiiee e 39
AXIS @SSIGNMENTS. ...t e e e s e e e e e e e e e e e e aaaaaaaeas 40
Programs: facilities to load and run additional programs...........cccccoeeciereeniiciiee e 43
Assignment of additional axis CONtrolS...........oovi i 44
Multiple joysticks for multiple Pilots..........ccoociiiiiiiii e 44
Helicopter pitch and bank trim facilities............ccc e 44
FSUIPC WASM MOGUIE......ciiiiiiiiee ettt et e e e s e eae e e e e e e e e e e e eeaann e e e e 46
USING LVAIS. ..ttt ettt e et e e e e et e e e e e e e e e e e e e e eeaaaaaaeas 46
USING HVAIS.... ettt e e e e e e 47
Using Calculator Code Presets. ... 48
WASM module ini file and parameters. ... 48
AN oV o F=T = T 1= (= 50
APPENDIX 1: “Do more with your joystick” (A user contribution).....................cccvvueee.... 51
APPENDIX 2: About the Aircraft Specific option and “ShortAircraftNameOK'................. 57
APPENDIX 3: Handling VRInsight serial devices in FSUIPC............cccociiiiiiiiee. 60
APPENDIX 4: Running FSUIPC7 on an FS Client PC...........cooiiiiiee 64

Options in the FSUIPC7.INI file

In a user-registered FSUIPC installation, all of the interesting options can be controlled through the FSUIPC7 User
Interface (UI). This is the recommended way, and allows changes ‘on the fly’. Changes made in that dialogue are
recorded in a file so that they are retained for the next re-load.

All options are recorded in FSUIPC7.INI, which is an editable text file initially created for you in the FSUIPC
installation folder.

This section of the Advanced User’s Guide deals with general options which don’t occur under specific headings but
are all collected in the [General] section of the file. These are only ever read during loading, unlike many of the other
sections.

Only those parameters shown underlined are not adjustable within the Settings window (for a registered user).

Parameters to help some add-ons operate correctly
These are also available in an unregistered install:

AxisIntercepts can be set to “Yes’ to force the intercepting and forwarding of axis controls by FSUIPC, even if this
action is not needed for FSUIPC calibration (where it will be done automatically in any case). This action will be
needed for some “fly-by-wire” aircraft only.

UseAxisControlsForNRZ=No: This is a facility for the [JoystickCalibration| section(s) of the INI file, not [General].
It is a special option provided to try to cope with some different add-on practices (notably, in this case, the Wilco
A320). Normally, the 4-Throttles, 4-mixtures and 4-Prop pitch calibrations result in an output with either a range which
includes the reverse zone, or, if the "no reverse zone" option is checked, a range from 0 (idle) to 16383 (max). These
are sent to MSFS using the older "????n_SET" controls (THROTTLE1 SET, etc), since these are the ones providing
the reverse zone below zero.

If you set the [JoystickCalibration] INI parameter UseAxisControlsForNRZ to "Yes", then the NRZ (no reverse zone)
option for all three axis types will use the AXIS ????n_SET controls (e.g. AXIS THROTTLE1 SET) instead, with a
range of -16363 (idle) to +16383 (Max). This will be Aircraft or Profile-specific if you set it in the appropriate
calibration section of the INI file.

AxesWrongRange=No: This goes into the [General] section, and when set to Yes it makes FSUIPC revert to an
erroneous way of providing certain control axis values in offsets. more details:

Offsets 332E-3336, and 3412, 3416, 3418 are intended, and documented, to provide the axis values in the correct range,
calibrated if so set. For throttles, for example, the correct range is 0-16k for forward thrust, with negative values
providing reverse. These values are then suitable for application directly to the MSFS control offsets, exactly as
documented. Unfortunately these offsets were wrong for a long time, often providing the incorrect range (-16k to +16k).
This went unreported and therefore unfixed during a period when some add-ons were developed which used the
incorrect values.

Therefore, when this serious bug was eventually located and fixed, those add-ons stopped working correctly. So, to
force these back to their old (wrong) behaviour: set "AxesWrongRange=Yes".

EventsViaCommands=No: MSFS axis controls ("events") are normally sent to MSFS via SimConnect. The events this
refers to are any control assigned to an MSFS axis event in the Axis assignments tab.

In case this causes an issue with priorities (which can be the case in some add-ons), you can revert to using windows
messages (WM_COMMAND) by adding EventsViaCommands=Yes to the [General] section. You won't find the
parameter there by default. Alternatively, if you only want this change to apply to specific aircraft, place the line in the
relevant [JoystickCalibration ...] section instead. An entry in the current aircraft's calibration section overrides any in the
[General] section.

LogOptionsProtect; By default FSUIPC prevents programs or plug-ins writing to offset 3400 and so changing the
Logging Options. If such control is needed, it can be allowed by setting this parameter to “No”.

TimeForLuaClosing=2 sets the time allowed for Lua plug-ins to close correctly before the FS is closed. The time starts
as soon as the event.terminate function has been called, assuming the plug-in uses it. The value in in seconds and can be
set from 1 to 20. A longer period might help those more complex plug-ins to tidy up properly.

WideLuaGlobals=Yes can be set to ‘N’ if you don’t need Lua globals to be copied over an enabled WideFS Network
and wish to stop this to make the ipc.Set and ipc.Get functions work faster..

ProvideAldata=Yes:. Set to No to stop FSUIPC reading any Al traffic data.

ProvideAlairports=Yes: Set to No to just stop FSUIPC reading departure and destination airport data.

These two parameters are provided to help overcome some problems, especially on some Prepar3D releases, where
reading Al data for TCAS displays can upset other add-ons such as sophisticated GPS based gauges.

General weather options

Currently the MSFS SDK provides no access to weather data, for read or write purposes.

Other general user options
InvokeFSUIPCOptionsKey: Records the Hotkey to display the FSUIPC7 main window.

DisconnTrimForAP: When this option is enabled, FSUIPC disconnects the analogue elevator trim axis input to FS
whenever either the FS autopilot is engaged in a vertical mode (altitude hold or glideslope acquired), or a program,
gauge or module has disconnected the elevator axis via FSUIPC (offset 310A).

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by setting
this parameter differently in that [JoystickCalibration ...] section.

ZeroElevForAPAlt: controls the option for FSUIPC to automatically centre the elevator input each time the Autopilot
altitude hold mode is changed (switched on or off, including AP engaged changes too).

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by setting
this parameter differently in that [JoystickCalibration ...] section.

MagicBattery: This reduces the discharge rate on the battery, keeping the voltage from dropping. If this is set ‘Yes’ or
0 then no drop is allowed. If set ‘No’ or 1 then the battery discharges normally. Any value from 2 to 999 acts as a
divisor on the discharge rate, so 2 makes the battery last twice as long, and so on. This is designed to assist in getting
over the apparent error in the airliners which makes it discharge far too quickly before engine start.

TCASid: FSUIPC supplies data on the additional Al aircraft flying in the neighbourhood, for external TCAS or
mapping programs to display. Normally such aircraft are identified by Airline and Flight number, if there is one,
otherwise by the Tail number.

However, other types of identification string can be chosen instead. In particular, the optional labels placed on the
aircraft by FS in the scenery view only shows tail numbers, so if you want to match them up you’d want to set this

parameter to “Tail”. The utility “TrafficLook™ can show these differences in its display. The full list of options here is:
Flight for airline+flight, or tail number, as available (default)

Tail for tail numbers only

Type for the “ATC type”, generally only the Make

Title from the aircraft title (in the .CFG file), truncated to 17 characters

Type+ for the type as above, truncated if necessary, plus the last 3 characters of the tail number
Model for the model description

TCASrange: Sets the maximum range at which Al aircraft will be added to the tables for external TCAS applications.
This defaults to 40 nm for both ground and air traffic, although it is fixed at 3nm when the user aircraft is on the ground
to avoid affecting the performance of programs wish wish to use the information to handle taxiing or runway conflicts.
Both ground and air ranges can be changed in the FSUIPC Traffic options tab. The parameter in the ini file maintains
both values in the same parameter, in the form “x,y” (air,ground). A value of O turns off the limit altogether.

FixedTCASoptions=Yes can be added by the User if the above two settings are to remain locked, unchangeable except
by editing here, in the INI file.

ThrottleSyncAll: controls whether the Throttle Sync Hot Key and added controls also operate on the Prop Pitch and
Mixture values as well as throttles. This has no effect on jets and helicopters.

SpoilerIncrement: This controls the amount the FSUIPC “Spoiler inc” and “Spoiler dec” change the spoiler position
on each use. The default is 512, giving 32 steps from spoilers lowered (0) and fully deployed (16383).

AileronSpikeRemoval

ElevatorSpikeRemoval

RudderSpikeRemoval: These control the options to ignore any aileron/elevator/rudder signals specifying maximum
possible deflection.

ClockSync: This facility synchronises the seconds values with that of your PCs system clock. It is defaulted off (=No).
Note that the synchronisation can only operate when the seconds = 0, and then it also has to set the minute.
Consequently, it will only attempt to make an adjustment when the minutes difference is less than that set by the next
parameter:

ClockSyncMins: The minutes difference within which FSUIPC’s ClockSyne facility will operate. This defaults to 5,
but note that if you want to reduce the occasions that MSFS reloads textures, you will need to set this lower.
Conversely, if you want the exact minutes value to be maintained as well as seconds, set this to 59 or 60.

UseProfiles: By default this will be set to ‘Yes’, but set it to ‘No’ if you want to use the Aircraft Specific facilities
instead of Profiles. This change will only stick if you have no "Profile" sections in the INI file.

You can also set UseProfiles=Files which will organise your settings for each Profile in separate files. This may be
much easier to manage for those who have made extensive use of the Profiles facilities. A separate document explaining
all about this option is installed into your Documents\FSUIPC?7 folder.

UseAirLocForProfiles: setting this ini parameter to Yes will change the profile matching from using the aircraft name
to using the folder name of the folder under which the currently loaded aircraft's aircraft.cfg file is located. This can
provided a better match for different versions of the same aircraft, such as when using different liveries.

ShowPMcontrols: This merely remembers the Project Magenta option setting for the assignment drop-downs.

ReversedElevatorTrim: This is probably not of any real use nowadays, as all the axes can be reversed in FSUIPC’s
joystick calibration facilities. Best left set to ‘No’.

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by setting
this parameter differently in that [JoystickCalibration ...] section.

PauseAfterCrash: This is the Miscellaneous option to set MSFS into Pause mode after it has reloaded a flight after an
aircraft crash. It allows the aircraft to be moved away from danger, getting out of a continuous loop.

SaveDataWithFlights=Never: This records the “Miscellaneous” tab option, telling FSUIPC whether to save “offset”
data when flights are saved, or not, and when to reload it. The options are Never, Menu, Auto, and Yes (“Yes” being
the option displayed as “always” in the options tab). IPCBIN files are always saved with flights in all except the Never
mode.

For a complete explanation of the differences in the options, please see the User Guide. For technical folks and
programmers, note that the IPCBIN files produced contain a snapshot of the entire 65536 range of FSUIPC “offsets”, so
all sorts of data can be read from it using a hexadecimal editor.

BrakeReleaseThreshold=75: This controls a "brake release threshold", for when your braking is controlled by toe
pedals rather than by using the keyboard or joystick buttons assigned to non-axis brake controls. In the latter cases,
operating the brakes automatically releases the parking brake (and possibly may also cancel autobraking action). This
doesn't normally happen with brake axes being used for braking, as they are separate controls. That could be viewed as
a drawback of having proper toe brake action, so this parameter is provided to set the amount of braking needed to
release the parking brake.

The parameter can be set in the [General] section, for application to all aircraft, but also, or instead, in the individual
[JoystickCalibration] sections so it can be set individually to suit different aircraft or profiles. The specific value
overrides the general one.

The number is a percentage of total braking -- so the default is 75% *. If you set 0% it turns the facility off. Pressure on
both brakes to at least the set level is required, and the release action is not "re-armed" until both brakes have returned
to "off". The toe brakes must both be calibrated in FSUIPC.

* As a special case, unless specifically overridden in its JoystickCalibration section, the value for any aircraft with an
ATC Type starting "Airbus" (in any case) is 0%, disabling the automatic parking brake release altogether.

JoystickTimeout=20: This timeout is no longer applicable except for EPIC USB devices, and may now be ignored.

AboutUserLine: A small amount of user-specified text can be displayed in one line in the box beneath the version
number, date and registration confirmation in the FSUIPC options "About" tab. The text can be up to 127 characters (if
they'll fit), and is specified using this parameter.

TextFileforDisplay=<filepath>
MaxTextRead=n: These parameters are related to special Lua display facilities and are described separately within the
ZIP file entitled “TextMenu display Lua package”.

SetForegroundOnKeySend=Yes: FSUIPC will try to set the focus to the MSFS main window before sending any key
events to the sim.

MaxNumberOfCustomEvents: defines the maximum number of custom events (those loaded from *.evt files) that
will be loaded. The default value for this parameter is 1024.

StopWAPIInMenu: setting this to No will prevent the WAPI interface from being stopped when in the MSFS main
menu and started again when returning to a flight. This prevents additional simconnect connections being used which
can sometimes cause issues due to a long standing simconnect bug where unused connections are not recycled. Note
that you still cannot use the WASM facilities when in the main menu, although the WAPI simconnect connection will
remain open. The default value for this parameter is Yes.

AdjustNavForMagVar=No: When set to Yes, the Nav1/2 values in offsets 0x0870 &7 0x0844 will be automatically
adjusted by adding the magnetic variation held in offsets 0x0C40 & 0x0C42.

NumberOfPumps=6: This controls the request if the (indexed) simvars:

FUELSYSTEM PUMP ACTIVE

FUELSYSTEM PUMP SWITCH
Only the indices for the number of defined pumps will be requested and available in the relevant offsets.
This has been added as requesting these variables for aircraft that use the new MSFS FuelSystem module for pumps that
are not available can result in the MSFS developer console menu being flooded with messages. This parameter prevents
this. If you do not use the MSFS developer console, you can set this to 16, the maximum value allowed.

RunningOnClientPC=No: set this to Yes if running FSUIPC7 on an FS client PC. Details on how to configure
FSUIPCT7 to run on a client PC can be found in Appendix 4 at the end of this guide.

MaxButtonAssignments: by default, you can have up to 2048 button assignments, with indices 0 — 2099. If you would
like to use higher indices, you can set this ini parameter to the number required, up to a max of 9999. Note however, the
maximum number of actual entries is still restricted to 2048.

Less used technical options

AutoTuneADF: This controls an option to ‘auto-tune’ the ADF radio. If this is enabled, when FSUIPC detects no NDB
signal being received it alternates the fractional part of the ADF frequency between .0 and .5 every seven seconds or so.
This allows external cockpits built with only whole-number ADF radio facilities to be used in areas like the U.K. which
have many NDB frequencies ending in .5.

AxisScanOnSimConnectOpen=No: This parameter can be changed to Yes to instruct FSUIPC7 to perform an
additional scan of your joystick axes when a SimConnect connection is opened. This may help if you axes are not
initially recognized when MSFS is started. However, beware setting this parameter as it is also known to cause a CTD
in some situations (this is currently under investigation).

AxisCalibration: This facility deals with inputs to the rudder, aileron and elevator axis offsets, via the IPC offsets. It is
intended for use with hardware drivers which, instead of sending normal axis inputs to FS, control the main flight
surfaces by direct writes to FSUIPC’s offsets, thus bypassing assignments, calibration, etc. The only such hardware
driver known to me is the one for the Aerosoft GA28R console. In FSUIPC this facility still operates for compatibility
with FSUIPC4 and before. However, you are advised now to leave this as “No”, and instead use the new facility
‘DirectAxesToCalibs’:

DirectAxesToCalibs: Setting this to ‘Yes’ makes FSUIPC assume that any direct writes to FSUIPC’s offsets for
rudder, aileron and elevator are from a hardware driver and are really meant as axis inputs. FSUIPC directs the values to
its Joystick Calibrations section, where you should then calibrate the inputs exactly as you would for a normal flight
control. The only hardware known to me which benefits form this is the one for the Aerosoft GA28R console. Do not
set this option if you use any sophisticated panels or external programs with their own autopilots, as it is possible that
they route their control values the same way. FSUIPC cannot distinguish the source.

To also allow for brakes to be sent to the Joystick Calibration, this value can be set to ‘All’.

DisableMSFSMonitor: this disables FSUIPC's MSFS (window) monitor, which disconnects (and possibly closes)
FSUIPC when MSFS can not be found. Some users have reported this issue on Windows 11, with FSUIPC7 closing (or
repeatedly disconnecting) even though MSFS is still running. Setting this option to Enum can prevent this issue by
using a different method (window enumeration) to find MSFS, and setting to Yes will disable the MSFS monitor. As of
FSUIPC version 7.3.7 (and later), windows 11 should be detected and this option automatically set to Enum, although
you can still override this by explicitly setting this parameter in your FSUIPC?7.ini.

KillLuasOnSimStop: setting this parameter to Yes will kill all luas as soon as a SimStop event has been received. Only
to be used if you have issues with Lua threads hanging when FSUIPC?7 is stopped.

StartiImmediately is not expected ever to be used directly by the user. When it is set to ‘Yes’ it makes FSUIPC
initialise the data interface with SimConnect immediately it is started, rather than wait for SimConnect to indicate
“SimStart”.

NormalStallTime=1, and InitialStallTime=30 can be used on poorer performing systems, very heavily loaded, to
attempt to stop FSUIPC re-initialising the SimConnect interface to MSFS when it finds itself starved of information
which should be arriving all the time.

The Initial one is used during initialisation, the other the rest of the time.

The range of values that can be set for these parameters is -100 to 100. The negative values give the same timeout, but
only result in a log entry informing you of the problem rather than an attempt to reinitialise the SimConnect connection.

TrafficStallTime=1: This is similar to NormalStallTime, but only operates on the Al Traffic data collection interface
to SimConnect. The value can be 1-10. There is no separate option for a log-only action.

UseEpsilon is normally omitted altogether. If needed, it can be added, in the [General] section of the INI file, set to
“Yes”. This will impose change limitations on most variables sent to FSUIPC by SimConnect, so lessening the load on
that interface but giving a little less precision in some values.

FiddleMachForPM=Yes is, hopefully, a temporary fix for Project Magenta (PM) users who suffer the problem of high
speed descents under MCP control as a result of PM incorrectly setting a Mach speed in the wrong mode. This only
affects MSFS adversely because of the odd way FS9 and before worked, for which PM was originally designed. To
enable this fix add this parameter (it won’t appear in the INI by default).

By way of explanation, when the PM MCP sets the IAS for the A/P it also sets the Mach value. This would be okay,
except for three things:

1. The Mach value it sets after cruise is ALWAYS the last one it set in cruise, not a correct one related to the IAS and
altitude/temperature/pressure.

2. The Mach is written after the IAS

3. In FS9 and before, the Mach setting did not affect the IAS setting nor vice versa until and unless you switched IAS/Mach
modes. However, in FSX and later the last-written value applies and is converted to the equivalent IAS/Mach no matter
which mode you are in!

This FSUIPC7.INI parameter simply makes FSUIPC discard any MACH writes whilst the PM MCP is in IAS mode.

FiddleAppAltForPM=Yes is another hopefully temporary fix for Project Magenta. It makes FSUIPC automatically
replace any altitude written during PM MCP APP mode by zero. It also sets the MCP altitude to zero in PM MCP APP
mode when a negative VS is set, and it does both these things even if Altitude Hold is enabled.

The intention here is to avoid any unwanted climbs when descending on the GlideSlope due to the fact that FSX seems
to be different to FS9 and before in that writing to the FS MCP's altitude register can affect the requested vertical speed
even though FS’s altitude hold option is not enabled.

LuaPath=<path>: allows Lua files to be indexed for assignment into a separate folder, anywhere on the same PC. This
parameter should be placed in the [LuaFiles] section of your ini file. It can be a sub-path from the installation folder (in
which case just give the sub-path), or a full path anywhere elsewhere on the same PC (determined by seeing a "'
character in the path, denoting a drive spec).

You either have all the assignable Lua files in the Modules folder, or in another. The limit is still 127 and the
numbering in the [Luafiles] section of the INI will still be based on the order of the Lua files in the folder, as discovered
initially (i.e when they first appeared). The numbering will stay the same if you merely copy all the Lua files out of the
installation folder and into the new one.

LuaRerunDelay=66: This parameter sets the time, in milliseconds, which is imposed between re-runs of the same Lua
plug-in. It is a safety precaution against repetitive execution causing an FS crash by stack overflow. For plug-ins which
take more than that amount of time to load and execute this effectively restricts the repeat rate from dials to 15 times
per second. The rate from buttons or keypresses being held down was already restricted as for those the repeat is not
effective until the current plug-in execution finishes._

Console=No and ConsoleWindow: This records the Logging option for a real time console window copy of the Log
file, seen when FS is run in Windowed mode. The ConsoleWindow parameter records its position and size.

LuaTrapKeyEvent=No: By default, key events trapped by the lua event.key function are not passed on to FSUIPC
for assignment activation after processing. Setting this parameter to No allows this, and and keys processed will also be
processed by FSUIPC's key assignments. Note that with this set (to No) there is also fine-grained control for this in the
flags used for event.key.

Note that it is not possible to stop MSFS key assignments being triggered with this parameter. The only way to prevent
MSEFS assignments being triggered on key presses is to give the focus to another program - an FSUIPC added control is
provided to do this — Key Focus FSUIPC (control number 1156).

TrapMSFSkeys: FSUIPC requests all key presses & releases from standard keys (i.e. not modifier keys) to be received
via the MSFS SDK SimConnect interface. Setting this parameter to Yes (the default is No) will tell MSFS that FSUIPC
will mask this event, and np other lower priority clients will receive it. Note that this will NOT prevent MSFS assigned
keyboard events from being processed.

DontResetAxes=Yes: Normally using the Axis assignments dialogue in FSUIPC options does not affect the surfaces
controlled by those axes. If this parameter is set to 'No', the memory of the previous axis values is reset to zero, which
may therefore cause a movement in those axes when returning to flight mode, but does, on the other hand, ensure a
correct value when the axis function is changed.

NoActionOn7B91: This can be added to the [General] section of the FSUIPC7.INI file, and set to 'Yes', to prevent
FSUIPC setting the SquawkBox 4 transponder mode when an external program writes to offset 7B91. This gets over a
problem with the OpenCockpits driver, in particular, which seems to try to handle both SB3 and SB4 transponders by
writing to 7B91 and dealing direct with SB4 at the same time. The FSUIPC parameter does not stop the FSUIPC-added
SB4 transponder controls from operating, however.

MaxSteerSpeed=60: This parameter appears only in [JoystickCalibration] sections, and deals with FSUIPC's facility to
'blend' its steering tiller control into rudder control as speed increases whilst on the ground. Both tiller (the FSUIPC
direct control, not MSFS's own), and rudder need to be assigned in FSUIPC by the "direct to FSUIPC calibration"
method, and both be properly calibrated for any blending to be active.

The MaxSteerSpeed parameter includes more complex facilities to restrict the rudder effect in different groundspeed
ranges. The simplest of these keeps the rudder at 10% of its input until half way to the full threshold speed, then
increase linearly to 100%. This is intended to make reasonably easy to check the rudder pedals whilst taxiing without
causing bad swerves, and also allows some use of rudder even at very slow speeds at the end of the landing ground roll.
The value of 10% minimum comes from the 737NG where at taxi speeds the rudder deflection is a maximum of 7
degrees compared with 67 degrees fully.

To make FSUIPC do this blending instead of the normal 0-100% linear method, just change the MaxSteerSpeed
parameter in the relevant [JoystickCalibration] section of the INI file to a negative value, eg -60 for the default 60 knot
threshold.

A more complex specification can be provided which allows the user even more scope. The MaxSteerSpeed parameter
can be given as MaxSteerSpeed = Qn1,n2,n3,n4 where nl to n4 are numbers used as follows:

e Ifnl is not zero, then rudder effect is 0% (ie eliminated) until a groundspeed of nl knots. Then the effect rises
linearly from 0% at nl knots to 10% at n2 knots.

e Ifnl is zero, then rudder effect is 10% until the groundspeed reaches n2 knots. n2 is not allowed to be zero.

e Ifn3 is not zero, then rudder effect rises linearly from 10% at n2 knots to 30% at n3 knots, then linearly again
from 30% at n3 knots to 100% at n4 knots.

e Ifn3 is zero, then rudder effect rises linearly from 10% at n2 knots to 100% at n4 knots. n4 is not allowed to be
ZEero.

Note that apart from the option for nl and n3 to be zero, n4 >n3 > n2 > nl. You should see that the option:
MaxSteerSpeed=-60 is in fact the same as specifying MaxSteerSpeed=Q0,30,0,60.

There is one shortcut. MaxSteerSpeed=Q is the same as specifying MaxSteerSpeed=Q10,20,30,60

You can also set this parameter dynamically by specifying an offset value preceeded by an 'x' character, e.g.
MaxSteerSpeeed=x66C0

The offset specified is read as a two-byte signed word and can be updated dynamically. There is also an additional
FSUIPC provided control that can be used to change this parameter dynamically.

RudderBlendLowest: This is an optional parameter which can be added to any of the [JoystickCalibration] sections of
the INI file (not [General]). It operates with the blending (described above) of an FSUIPC steering tiller axis and the
rudder during calibration. Previously, because of the way the blending operated, the rudder pedals used to have no
effect when the aircraft is stationary, or nearly so. This meant that rudder operation checks--those on screen within the
cockpit (along with the other control surfaces), or via viewing the rudder from outside—meant operating the steering
tiller instead of the rudder pedals.

The RudderBlendLowest parameter fixes that by giving a ground speed below which the rudder blending is not taking

place and only the rudder input is used. This speed defaults to 1 knot, which means the aircraft just needs to be
stationary. So there is normally no need to change this parameter.

TransmitErrorsReconnect: This optional parameter allows you to configure the number of errors received when
transmitting events to the FS before a SimConnect re-connection is performed. The default for this parameter is 5.
VRIDisableCMDRST: This optional parameter in the [General] section of the INI can be set to ‘Yes’ to disable the
sending of the CMDRST call for VRI devices.

UseKeyboardHook=No: when set to Yes, a global keyboard hook will be installed to receive all key strokes directly
from windows, and keyboard input will not be requested via SimConnect (unless running FSUIPC7 on a client PC).
This can (possibly) help with certain controllers that function by sending key presses.

InitialKeyRepeatRate: This optional parameter in the [Keys] or profile specific [Keys.xxx] sections of the INI can be set
to the number of milliseconds that pass until a first key repeat is recognised. The default value is 250 (ms).

SubsequentKeyRepeatRate: This optional parameter in the [Keys] or profile specific [Keys.xxx] sections of the INI can
be set to the number of milliseconds that pass until a second and subsequent key repeat is recognised. The default
value is 100 (ms).

10

AUTOSAVE: INI-file only options

AlsoManage, for additional files

Some add-on programs produce files when Flights are saved separately from the usual ones in the MSFS flights folder,
so that the AutoSave option fails to manage their numbers, deleting older ones when the FLT files are deleted. The
types handled by default are FLT, FSSAVE, SPB, PSS, FMC, ABL, RCD. PNL and IPCBIN. For any others, and files
in other folders, you have to manually add some lines to the [AutoSave] section of the FSUIPC7.INI file.

Give the complete path name, from the drive (e.g. C:\ ...) onwards (or the computer name for a Network in the usual
form, i.e. \\<name> ...).

Up to 64 “AlsoManage” lines can be given, numbered 1 to 64.

AlsoSave, more variable and informative naming
The "AlsoSave" flight saving facility can operate with a filename containing special values, using the following:

%A for the Aircraft name. This is the aircraft title but stripped of every character other than alphabetics and numerics.
%D for the Date in the form YYYYMMDD

%T for the Time in the form HHMM (no seconds)

%W for the day of the Week (MON, TUE etc).

The A,D,T and W can be upper or lower case.

Note that, unlike normal autosaved files, FSUIPC never erases any of these, so don't set a short time interval and
include the Time in the name—otherwise your disk directories will become very long quickly, and slow things down.

11

Logging facilities
These options can be controlled ‘on the fly’ from the FSUIPC7 main window Log menu entry

FSUIPC always produces a text file called FSUIPC7.LOG in the installation folder. Entries in the log are timed, from
the start of the FS session. The time is in milliseconds and appears on the extreme left of each line.

Please use the logging facilities to check things before reporting problems or omissions in FSUIPC, and supply an
appropriate log file (or extract) properly zipped up with such reports.

Note that log files can get very large if all the options are turned on. Keep test flights short. You can read log files
whilst flying provided you use a reader which shares access (like recent Notepad programs), or use the ‘NewLogKey’
described below to close logs and start new ones.

All Log control parameters go into the [General] section of FSUIPC7.INI. None are included by default.

LogWeather=Yes: Logs weather data. This will log incoming data, set by a weather control program and the actual
weather data constructed by FSUIPC in FS terms. Then you get the weather read out by FSUIPC and lastly placed back
into the Offsets for applications to read. Incoming weather control data on the Advanced Weather and New Weather
Interfaces is also logged in full.

However, not that as there is no interface to MSFS weather at the moment, this option will not log anything and should
not be used.

LogWrites=Yes: Logs the offset “writes’ received from applications, with global offset address and data size, plus all
bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very large!]

LogReads=Yes: Logs the offset ‘reads’ received from applications, with global offset address and data size, plus all
bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very large!]

LogEvents=Yes: This option logs all FS “key events”, other than those from axis controls. This can be very useful to
those seeking to understand the actions of their buttons and keys, or to view the sorts of things some of the more
complex panels do, repeatedly, every second.

LogAxes=Yes: This logs just the axis input events.

LogButtonsKeys=Yes: This logs most Keyboard events (KEYUPs only when programmed), and all button operations.
The logging can get quite long, but it will be very useful when trying to analyse exactly what your complex FSUIPC
button or key programming is doing.

LogLua=Yes: Enables extra Lua plug-in logging, and causes each running Lua plugin to use its own Log file. These
files are cumulative, though—each time the same plug-in runs it adds to an existing Log file.

DebugLua=Yes: Enables Lua tracing automatically, for all Lua programs. this is now preferred over the "LuaDebug"
method of starting Lua plug-ins.

LogExtras=Yes: This logs additional technical data about the inner workings of FSUIPC, the nature of which will vary
from time to time according to needs. There is nothing here that would be of interest to the user, but when investigating
problems users may be asked to enable it so that the logs returned can be more meaningful in solving them (especially
as this now also logs thread Ids).

LogSimC=xxxx,xxxX ... (Where each “xxxx’ is either an offset, or a range xxxx-xxxx): whenever the values associated
with offsets listed or included here are read from or written to a SimConnect Variable (“SimVar”) those values are
logged. The list can request several disparate offsets or ranges—the limit is imposed only by the INT file maximum line
length (255 characters).

Dontl.ogThese: In order to make it easier to check Events in the FSUIPC7.LOG file when using aircraft such as the
PMDG 737NGX, which appear to be sending some events continuously all the time they are loaded, this INI file
parameter is available to avoid logging specific event numbers. You can list individual events (by their decimal control
number), or a range (n-n), inclusive of the end points. Each is separated from the next by a comma.

For example, for the PMDG 737NGX it seems the following is a good value for this parameter to avoid logging
thousands of entries and flooding out any useful information:

DontLogThese=66485,69000-70999,66503,66504

The 66485 is "Anti ice toggle Eng2" which appears to be sent at a rate of about 15-16 per second! The large range
69000-70999 maybe too big, but prevents non-FS controls in that range being sent at similar rates whenever the Mouse
pointer rests over a switch or button! Finally the last two merely suppress the two axis events for "mouse look" being
logged.

12

Note that, unlike all other parameters in the [General] section, you can modify this one without closing FSUIPC and
reloading it. Simply go into FSUIPC options and come back out to get it re-read.

This ini parameter can also be used in your [Profile.xxx] sections to be used when that profile is loaded only.

NewLogKey, StopLogKey: These allow you to assign keypresses to close the current Log file (if logging was
enabled), and start a new one. The ‘NewLogKey’ will carry on with the same logging options, whilst the ‘StopLogKey’
will revert to default logging (the minimum). Between them these two keys give complete control over the logging.
(Note that both actions are also available in the FSUIPC dialogue window).

The current log file is always called FSUIPC7.LOG. The others are named in numerical order FSUIPC7.1.LOG, ...
2.LOG, ... etc. The keystrokes are defined as in Flight Simulator’s own controls, and listed below in the Button
Programming section. For example, I use “Shft+Ctrl+L” and “Shft+Ctrl+O” (for “Log” and “Off” respectively) which
would be

NewLogKey=76,11
StopLogKey=79,11

13

Monitor facilities

FSUIPC can monitor, on every FS frame, up to four values (or the same values in different formats, if needed), and
display or log them when they change. You can access this from the Log — Offsets... menu entry. For each value to be
logged you enter or select three things:

Offset: which identifies the position of the value. This is a hexadecimal number, normally in the range 0000 to FFFF. For a list of the
offsets, see the Offset Status document.

Type: this defines the type of variable, so that the formatting in the display will show something meaningful. The types currently
supported are tabulated below.

Type Description C type Type Description C type
S8 Signed 8-bit value, -128 to +127 signed char UIF32 | 4 byte Integer & Fraction: 16-bit Uses an
fraction followed by 16-bit unsigned
unsigned integer int
U8 Unsigned 8-bit value, 0 to 255 unsigned SIF64 | 8 byte Integer & Fraction: 32-bit Uses an
char, or fraction followed by 32-bit signed | unsigned
BYTE integer then
signed int
S16 Signed 16-bit (2 byte) value short UIF64 | 8 byte Integer & Fraction: 32-bit Uses two
fraction followed by 32-bit unsigned
unsigned integer ints
U16 | Unsigned 16-bit (2-byte) value unsigned FLT32 | 32-bit (4-byte) standard floating Float
short, or point value
WORD
S32 Signed 32-bit (4-byte) value int FLT64 | 64-bit (8-byte) standard floating Double
point value
U32 Unsigned 32-bit (4-byte) value unsigned int, ASCIIZ | A string of single-byte characters | Char][], or
or DWORD terminated by a zero byte. A ASCIIZ
length an limited number of these
is shown
SIF16 | 2 byte Integer & Fraction: 8-bit Uses a short SA1l6 16-bit signed Angle in FS format | Usesa
fraction followed by 8-bit signed (-180 degrees = max+1) short
integer
UIF16 | 2 byte Integer & Fraction: 8-bit Uses an UA16 | 16-bit unsigned Angle in FS Uses
fraction followed by 8-bit unsigned unsigned format (360 degrees = max+1) unsigned
integer short short
SIF32 | 4 byte Integer & Fraction: 16-bit Uses an int SA32 32-bit signed Angle is FS format Uses int
fraction and 16-bit signed integer
UA32 | 32-bit unsigned angle in FS Uses
format unsigned
int

Hex: For most numerical values the sensible display will be decimal. However, for the plain fixed point integer values (S8, U8, S16,
U16, S32 and U32) you may want to view them in hexadecimal instead.

Then you have to select how you want the values to be displayed. There are four options, and any or all of these can be selected:

Normal Log File: Changes in the monitored values are listed in the FSUIPC7.LOG for later viewing. Additionally, for any
monitored offset, the offset is also treated as a “LogSimC” offset (see above) automatically so that SimConnect reads/writes are
logged.

Debug String: The same messages are sent to a debugger or debugging monitor such as DebugView, for viewing in parallel to the
FS actions.

FS Window: The-menttorirets—doneby—tsiop nes—ia—th messs
sereenr- Currently not available due to issues with the SimConnect text facilities.

FS Title Bar: The messages replace the FS title altogether. Only one is shown at a time, so this is only useful for monitoring one
value.

Note that at least one of these options needs selecting for the value to be monitored, and if it is monitored and is a numeric (i.e. not
ASCIIZ) then its value is also available in an FSUIPC offset for use by Lua or GFDisplay or other programs to display on hardware
when needed. The values relating to the four Monitor slots are provided in 32-bit float form in offset 03A0, 03A4, 03A8 and 03AC,
respectively, and already converted to reflect the type specified.

If the value requested is not available at any time the result will show “<invalid>". When looking at some Engine or other aircraft
things, this can happen transiently, for instance whilst an aircraft is being loaded.

All the monitoring selections are saved in the FSUIPC7.INI file, in a section called [Monitor].

14

This section can also include up to 4 parameters in the following format:
Monitor N=xxxx,yyyy

where N is an integer between 4 and 7, and xxxx, yyyy are two offsets defining an area of the 65KB offset data. The area is inclusive
of both of these offsets.

These offsets will be logged when changed, but only if the Normal Log File option is set in the Monitor section of the logging tab
(see above).

JoyNames
The INI file section [JoyNames] is fully described in its own chapter in the User Guide.

Profiles

If you opt to use the Profile facilities, to have different button, key, axis and calibration settings for a number of types of
aircraft, then FSUIPC will create [Profile.<name>] sections in your INI file. These take the name of the profile you
request, for example “Jets”, “Props”, “Helos”, and simply contain a list, in the usual 1=<name>, 2=<name> ... format,
of those aircraft names which belong to the particular profile, according to your assignments. Those aircraft names may
be the full names, as when you assign in the FSUIPC options dialogue, or can be shortened or substring names.

For extensive use of Profiles you might find it much easier to manage by using the UseProfiles=Files facility. This
splits all of the settings for each profile into a separate file, one per profile, stored in a separate folder. For more details
and full instructions please refer to the separate document about it installed in your Documents\FSUIPC?7 folder.

15

Button Programming

FSUIPC’s options dialogue provides a page for programming button in all the main ways. Here we look at how this
programming is encoded in the FSUIPC7.INI file, and how the programming can be extended to provide multiple
keystrokes and controls for a button, mixed if required, and to provide compound (conditional) actions—ones
depending on other buttons, switch settings and even previous keyboard presses. There are even facilities to make
Button actions depend upon values in offsets from the FSUIPC IPC interface, which really provides a wealth of
possibilities (for that part you will need to get the FSUIPC SDK too, as the offset listings are provided in that package,
in the Programmer’s Guide).

FSUIPC reloads all Button parameters each time the aircraft is changed in Flight Simulator, so you can edit theses and
test them out without having to reload Flight Sim every time.

Before embarking on the programming itself, several global parameters need to be described. These won’t appear in the
INI file unless you add them, and you only need to add them (in the main [Buttons] section) if you need something
other than the defaults:

InitialButton: This controls a facility to make FSUIPC perform one-off actions when FS is first loaded and running
(i.e. actually ready to fly). This is by programming a real or imaginary Button. Simply add the line “InitialButton=j,b”
to the [Buttons] section. The values of j (0-255) and b (0-31) can specify a real joystick and button, or a non-existent
one, it doesn’t matter. Real ones can have an action assigned on-line, in the Buttons option page, but multiple actions
for any button, real or not, can be accomplished by editing the INI file as described here.

IgnoreThese: This can be used to list a number of buttons which are to be ignored by FSUIPC in the Buttons &
Switches tab. This is to deal with faulty button signals which are repeating without control and thus preventing the
others from being registered on the screen ready to program. The parameter takes this form:

IgnoreThese=j.b, j.b, ...

listing the joystick number (j) and button number (b) of each button to be ignored. To make it easy, you can edit the INI
file whilst in the Button assignments dialogue and simply press “reload all buttons” to activate the changes.

Note that the action of ignoring buttons only applies in the button assignments dialogue—if they are already assigned
the assignment will still be effective.

You can also use the wild card "' for the button number, in which case all buttons will be ignored. This is for
convenience only, and when used this line in your ini will be re-written to contain the complete button list (numbers 0-
39).

This parameter can also be used in the [Axes] section of the FSUIPC7.INI, using the axes letter instead of the button
number (see later).

EliminateTransients: This can be added, and set to “Yes’, to eliminate short (transient) button press indications. This is
intended to help deal with some devices which create occasional spurious button press signals. It operates only with
locally-connected joysticks (but not EPIC or GoFlight devices).

Note that enabling this option may mean you have to consciously press buttons for slightly longer. It depends on the
PollInterval (below). A “transient” button indication is one which only exists for one poll, so a real press would have to
last up to 50 mSecs (twice the default poll interval) to be sure of being seen (more, allowing for variations in the polling
due to processor/FS activity). You may find you need to adjust the PollInterval.

PollEpicButtons=Yes: Set this to No if you experience any difficulty getting FSUIPC to operate correctly on a system
with an EPIC installed but which you do not want to program via FSUIPC’s “Buttons” page.

ButtonRepeat=20,10: The first number here controls the button repeat rate, when repeating is enabled for a specific
button. The range is 1 to 100 and is the number of repeats per second. Note that the higher rates may not actually be
achievable. If you want no limit placed, allowing the repeats to go as fast as they can under each circumstance, set this
parameter to 0. This can be very fast, so beware!

Note that it is unlikely that this rate will be exactly maintained as it is subject to FS performance variations, depending
on the action being repeated, but it acts as a good target control value.

The second number gives an initial delay, before repetitions begin. This is in terms of how many potential repetitions to
miss, so with 20 repeats per second, 10 would give a delay of half a second. This allows the same button to operate to
increment/decrement a value just once, or, by holding the button down, repeat until released.

A value of 0 for the initial delay value means there will be no delay before the repeats start -- this is how FSUIPC has
been until the delay facility was added.

16

PollInterval=25: This parameter tells FSUIPC how often to read (“poll”) the joystick buttons. The time is in
milliseconds, and the default, as shown, is 25 (40 times a second).

A polling rate of 0 will stop FSUIPC looking at buttons altogether. This may come in useful for checking whether a
rogue joystick driver is causing problems.

A polling rate of 40 per second is more than adequate for all normal button programming. It is only when you come to
the more advanced uses that you may want to change this. Rotary switches, for instance, may give pulses so fast that
some are missed at such a rate.

Any value from 1 millisecond upwards can be specified, but those from 50 upwards result in a specific number of
“ticks” (55 mSecs) being used. i.e. 40-82 actually result in 55 (1 tick), 83-138 in 2 ticks, and so on. Ticks are also
approximate, in that they depend on the other activities and loading upon FS.

Values 1-59 milliseconds are actually handled by a separate thread in FSUIPC and give more accurate results, but note
that polling the joysticks too frequently may damage FS’s performance, and may even make its response to joystick
controls more precarious. No truly adverse effects have been noticed during testing, but it is as well to be warned. If you
think you need faster button polling, try values in the range 10-25, and make sure that FS is still performing well each
time.

Note that the PFCcom64 and PFChid64 “emulated” joysticks (those with numbers 16 upwards) are polled four times
more frequently in any case—this is done because there is no overhead in doing so—there are no calls to Windows but
merely some data inspections.

KeyboardFocus: When this is included and set to 'Yes' it ensures that any keypresses sent by external programs (as
FSUIPC controls) are directed to the main FS window for processing. This would normally be the case except that
folks using Windows external to MSFS might be changing the keyboard focus away from the main FS window. Using a
touchscreen, for instance, moves the keyboard focus even though it is the mouse which is activated by touch. Setting
KeyboardFocus=Yes makes FSUIPC restore focus to the main FS window every time it is asked to send a keypress.
The FS window will become the foreground window at the same time.

For key-presses assigned to buttons in FSUIPCs Buttons & Switches assignment dialog, FSUIPC will always give
MSEFS the focus so that these key presses can be received and processed.

More ambitious users may wish to retain focus elsewhere for some key presses. This can be performed using the added
FSUIPC control "key focus restore" (number 1125), as listed later in the Added controls list.

FORMAT OF BUTTON DEFINITIONS

The button programming is saved in sections in the INI file. For globally operative buttons this is called [Buttons]. For
aircraft-specific buttons it is [Buttons.<aircraft name>]. Up to 2048 separate entries defining button actions can be
included in each section, usually numbered from 0-2047, provided that the total of the definitions in the Global section
and the largest aircraft-specific section is not greater than 2048. The numbering is only important in that it determines
the order of actions for multiple assignments involving the same buttons, and doesn't need to be sequential otherwise.
You can increase the allowed numbering of entries using the MaxButtonAssignments ini parameter, used in the
[General] section. Note that this only allows higher index numbering to be used, but the total number of button
assignments is still limited to 2048.

The <aircraft name> part of the section heading can be abbreviated (manually, by editing the INI file) so that it applies
to more than one aircraft. It will then be selected on a substring match to the actual <aircraft name>. Note that only the
first substring matched profile will be selected and used.

The basic format of each entry in the Buttons section is as follows:
For keypresses: <Entry number> = <Action><Joy#>,<Btn#> K<key>,<shifts>
For controls: <Entry number> = <Action><Joy#>,<Btn#>,C<control>,<parameter>

For macros (see the separate section on macros):
<Entry number> = <Action><Joy#>,<Btn#>,CM<file#>:<ref#>,<parameter>

For presets (see the separate section on calculator code presets):
<Entry number> = <Action><Joy#>,<Btn#>,CP<PresetName>,<parameter>

The format of the parameters becomes more complex for conditional actions, so they will be described later.

17

The <Entry number> is not material most of the time—except in sequences for single button presses/releases. It is just a
sequence number from 0-2047 (but limited to a total of 2048 entries for the general section plus any one Aircraft-
specific section).

Each entry must have a unique entry number, and the actual order is only important when multiple actions are defined
for the same button. FSUIPC will retain the numbering, and hence the order which the number (not the line position)
defines.

You can add comments following a semicolon (;) at the end of the line, and these will be retained. You can also insert
lines containing only comments, but they need an <Entry number> too, otherwise they may not retain their relative
position. Comments can contain up to 63 characters—Ilonger ones will be truncated if and when the [Buttons] section is
re-written by FSUIPC.

<Action> is a single letter denoting the action being defined:

P Pulse the key press or control: i.e. do not hold the keys down whilst the button is held down.
This is always the case for controls, and should always be the case for any key presses
involving ALT key usage, because once the FS Menu is entered FSUIPC cannot supply
further changes like key releases.

H Hold the specified keys down until the button is released. (This doesn’t apply to Controls
and will be treated like P in their case). Do not use this with key presses involving ALT, for
the reason just given.

R Repeat the key press or control whilst the button is kept held down. The repeat rate is
approximately 6 per second and is not adjustable. Do not use this with key presses involving
ALT, for the reason already given.

U Pulse the key press or control when the button is released.

Any button can have a U entry as well as a P, H, or R entry. Provided the button only has one P, H or R,
and/or one U entry, and that when it does have two they are either both key presses or both controls, then the
button programming can be handled entirely in FSUIPC’s Buttons dialog.

The <Joy#> identifies the joystick number (0—15 for normal joysticks, 16 upwards for PFC, GoFlight or other
future ‘emulated’ joysticks) as displayed by FSUIPC. The <Btn#> identifies the specific button (0-39), again
as in FSUIPC’s display. Of these buttons 0-31 are regular buttons and 32-39 are the 8 possible POV view
angles, starting forward and going clockwise every 45 degrees. (There are no emulated POVs so for joysticks
16 and upwards the buttons numbers are always in the 0-31 range).

Note that the Joystick numbers 0—15 may be replaced be an assigned letter (A—Z, omitting I and O) if the
JoyLetters facility is being used (now the default) to assign joysticks indirectly, in case their real ID numbers
change.

When buttons on WideFS clients are programmed, the Joystick number also includes a Client PC number—
1000 for client 1, 2000 for client 2 and so on. The client numbering is actually handled by WideServer, which
keeps a record of Client PC names and assigns them numbers in the WideServer.ini file. You only need to
worry about that when changing PCs or renaming them.

For key presses, the <key> value following the letter ‘K’ is the virtual key code for the key to be pressed.
Here’s a list for convenience (but note that not all of these will be usable):

0 Null (+ Alt, Shift etc alone) 39 Right arrow

8 Backspace 40 Down arrow

12 NumPad 5 (NumLock Off) 44 PrintScreen

13 Enter 45 Insert

19 Pause 46 Delete

20 CapsLock 48 0 on main keyboard
27 Escape 49 1 on main keyboard
32 Space bar 50 2 on main keyboard
33 Page Up 51 3 on main keyboard
34 Page Down 52 4 on main keyboard
35 End 53 5 on main keyboard
36 Home 54 6 on main keyboard
37 Left arrow 55 7 on main keyboard
38 Up arrow 56 8 on main keyboard

18

57 9 on main keyboard 112 F1

65 A 113 F2

66 B 114 F3

67 C 115 F4

68 D 116 F5

69 E 117 F6

70 F 118 F7

71 G 119 F8

72 H 120 F9

73 | 121 F10

74 J 122 F11

75 K 123 F12

76 L 124 F13

77 M 125 F14

78 N 126 F15

79 O 127 F16

80 P 128 F17

81 Q 129 F18

82 R 130 F19

83 S 131 F20

84 T 132 F21

85 U 133 F22

86 \ 134 F23

87 w 135 NumPad Enter (or F247)
88 X 144 NumLock
89 Y 145 ScrollLock
90 Z 186 ;- Key*
96 NumPad 0 (NumLock ON) 187 = + Key*
97 NumPad 1 (NumLock ON) 188 , < Key*
98 NumPad 2 (NumLock ON) 189 - _ Key*
99 NumPad 3 (NumLock ON) 190 . > Key*
100 NumPad 4 (NumLock ON) 191 1 ? Key*
101 NumPad 5 (NumLock ON) 192 ' @ Key*
102 NumPad 6 (NumLock ON) 219 [{ Key*
103 NumPad 7 (NumLock ON) 220 \ | Key*
104 NumPad 8 (NumLock ON) 221 1} Key*
105 NumPad 9 (NumLock ON) 222 # ~ Key*
106 NumPad * 223 * o) Key*
107 NumPad + 225 'AX' key
109 NumPad - 226 "<>"or "\|"
110 NumPad . 227 Help key
111 NumPad / 228 00 key

* These keys will vary from keyboard to keyboard. The graphics indicated are those shown on my UK keyboard. It is
possible that keys in the same relative position on the keyboard will respond similarly, so here is a positional description
for those of you without UK keyboards. This list is in left-to-right, top down order, scanning the keyboard:

223 ") is top left, just left of the main keyboard 1 key

189 -_ is also in the top row, just to the right of the 0 key
187 =+ is to the right of 189

219 [is in the 2nd row down, to the right of the alpha keys.
221 1} is to the right of 219

186 ;: is in the 3rd row down, to the right of the alpha keys.
192 '@ is to the right of 186

222 #~ is to the right of 192 (tucked in with the Enter key)
220 \| is in the 4th row down, to the left of all the alpha keys
188 ,< is also in the 4th row down, to the right of the alpha keys
190 .> is to the right of 188

191 /7 is to the right of 190

The <shifts> value is a combination (add them) of the following values, as needed:

1 Left Shift

2 Left Control

4 Tab

8 Normal (add this in anyway)

16 Left Alt

32 Right Shift

64 Menu key (the application key, to the right of the right Windows key)

128 Right Control
256 Right Alt
512 Win (can only be used with the FSUIPC-added key press and release controls)

19

[Note that the Tab and Left Alt keys are denoted by opposite bits here than when used for key programming. Apologies
for this, which was a design oversight now too late to change]

If only “normal” is needed, the whole parameter and the preceding comma can be omitted. Usual values are:
9 for Ishift+ ...
10 for Icontrol+ ...
11 for Ishift+lcontrol+ ...

For FS controls the <control> is a number from 65536 upwards, denoting the specific FS control number. Lists of these
can be found in my various FS controls documents. In the FSUIPC Buttons page the controls are shown by name
normally, but if you want to try a control which has no name but might do something useful for you, enter it here, in the
INI file. In the Buttons page FSUIPC will show this by number instead of name.

The <parameter> for a control is optional — just omit this along with the preceding comma for most toggle/button type
controls. A parameter value of 0 will be assumed anyway.

Either or both of the <control> and <parameter> values can be provided in hexadecimal, preceded by an ‘x’ character.

As well as the FS controls, a number of additional FSUIPC controls are available. These range from 1000 to 3000, and
also values ‘xcc00zzzz’ (in hexadecimal) which encode the FSUIPC “Offset” controls. See the list below the discussion
on ‘Keys’ for full details.

SEQUENCES, COMBINATIONS, and MIXTURES

The Buttons page in the FSUIPC options is deliberately kept rather simple, hiding some of the programming
possibilities. By editing the INI file you can do more:

e Hold one key down whilst pressing another

e Press and release a sequence of keys

e Mix key presses and FS controls in one button operation

e Make button actions conditional on the state of other buttons (see ‘Compound’ buttons, below)

e Make button actions conditional on values in FSUIPC offsets (see ‘Adding offset conditions’, below)

The first three are simply done by defining the actions in separate entries, each referring to the same joystick/button
number. I’d recommend you first use the Buttons page to get the initial action programmed (this making sure you have
the right button number), then close FS and edit the entries already made in the INI file. The only important thing is to
number the entries in sequence — preferably, but not necessarily, consecutively.

Examples:
16=H1,2,K69,8
17=H1,2,K49,8

Presses and holds the ‘E’ key then presses and holds the ‘1’ key, so both are pressed together. They are both released (in
the same order) when the button is released.

18=P1,3,K69,8

19=P1,3,K49,8

20=P1,3,K50,8

21=P1,3,K51,8

22=P1,3,K52,8

Presses and releases ‘E’, then “1°, 2°, °3°, and ‘4’ in rapid succession, selecting all Engines.

20

COMPOUND BUTTON CONDITIONS

Facilities are included to allow you to specify actions for one button which are dependent on the state of another button
(or more likely, switch). This by using what I call “Compound” button programming—though it could equally be
“Conditional” or “Co-operative”. Anyhow, I use the letter C in the definitions, as follows:

n=CP(+j2,b2)j.b,
n=CU(#j2,b2)j,b, ...
n=CP(-j2,b2)j.b, ...
n=CU(j2,b2)j.b, ...

Here the ‘C’ denotes compound button checking, whilst P = pulse on pressing, U = pulse on releasing, as before. You
can also use CR in place of CP for a repeating action—the repeats continue whilst all the conditions are true. There is
no facility for the Hold action with the compound facilities.

Inside the parentheses are details of the secondary button, which must be in a certain condition for the current button to
operate:

(+j2,b2) means that button b2 on joystick j2 must be pressed ("on") for the current button action (for j,b) to be
obeyed.

(-j2,b2) means that button b2 on joystick j2 must be released ("off") for the current button action (for j,b) to be
obeyed.

The j,b, ... part is the usual button parameter, for the action of the “current” button which is button b on joystick j.

You can have one condition, as shown above, or two, or more (up to 16 in fact), like this:
n=CP(+2,b2)(+j3,b3)j,b,

where, now, both the parenthesised conditions must be met for the ‘j,b’ button action to result in the defined event.

The conditions can be made to apply not to the current state of a button, but to the state of a ‘flag’ that is set and cleared
by a button (or even a keypress). For every possible “normal” button (16 joysticks x 32 buttons = 512 buttons) FSUIPC
maintains a “Flag” (F). Each time any button is pressed (goes from off to on) FSUIPC toggles its flag. This makes the
buttons flag a sort of “latching” switch. You can test it in any parenthesised condition by preceding the condition by F,
thus:

N=CP(F+2,b2) ...

This says the rest of this parameter is obeyed if the Flag associated with j2,b2 is set. A condition (F—j2,b2) tests for the
Flag being clear. Note that the actual current state of the button j2,b2 is not relevant. All that matters is whether it last
left its Flag set or clear.

Any of the conditions in a multiple-conditioned setting may be on Flags.

These Button Flags can also be set, cleared and toggled by three special FS controls, Button Flag Set (C1003), Button
Flag Clear (C1004), and Button Flag Toggle (C1005). In all three cases the Joystick (0—15 only) and Button (0-31)
referenced is given in the Parameter, by a value calculated as:

256 *] +B (for example, Joystick 15, Button 31 would be 3871).

These three controls are listed in the FSUIPC options drop downs for assignment in both the Buttons and Keys pages,
so you can program them there, or here in the INI file. With these themselves as controls resulting for conditional
button actions, you can influence conditions for button actions in a whole multitude of ways.

One point to note: since you can use the keyboard or other compound button actions to set, clear or toggle the flags, the
actual button for which the Flag is assigned does not actually need to exist!

Okay. Now what does this really mean? Some simpler examples will suffice here. I leave it to the more imaginative
amongst you to come up with some really complex applications!

First, it means that you can assign multiple uses to any number of buttons by making them conditional on a number of
others. For example, a 12-position latching rotary switch could be wired to operate buttons 1 to 12 on joystick 1. Then
for any other button I can program 12 different actions. For example, button 0,3 could have twelve different actions
assigned, like this:

1=CP(+1,1)0,3, ...
2=CP(+1,2)0,3, ...
3=CP(+1,3)0,3, ...

21

12=CP(+1,12)0,3, ...

and so on. For example, you may have a set of assignments for ground operations, a set for take-off, a set for climb, a
set for cruise, and so on.

Second, to economise sensibly on the use of buttons, where you really need a toggle you can make any button toggle
between two actions by using a flag as a condition. For example, suppose your button is Joy 11, button 3, and a spare
flag (a button on joysticks 0-15 not otherwise used) is 15, 2. Program your button with three lines in FSUIPC (the
numbers on the left need to be sequential with whatever's there already, but I'll assume you have no others so will start
with 1):

1=P11,3,C1005,3842

This says execute Control 1005 whenever your button is pressed. Control 1005 is "Button Flag Toggle". The parameter
'3842' identifies the Flag: 256 x joystick 15 + button 2. So, this flag will now alternate between being set and clear each
time you press the button.

2=CP(F+15,2)11,3, ...

This tells FSUIPC what to do if the button is pressed AND the flag is set. Replace the ... part by the Control number and
parameter for one of the actions you need.

3=CP(F-15,2)11,3, ...
Similarly, this tells FSUIPC what to do when the button is pressed and the flag is not set.

Third, you can now program those two-phase type rotary switches, the ones where turning the spindle one way gives
pulses on two lines phase shifted one way, and turning the spindle the other way gives the opposite phase relationship.

Say the inputs from the rotary are on Joystick 1, Buttons 1 and 2. When B1 is ON and B2 goes from off to on, then the
spindle has turned one way. When B1 in ON and B2 goes from on to off, the spindle has turned the other. That is the
simplest example:

1=CP(+1,1)1,2, ... turn direction 1 action
2=CU(+1,1)1,2, ... turn direction 2 action

You can also have double speed action, operating on every off to on and on to off change of B2. Just add two more
conditions:

3=CP(-1,1)1,2, ... turn direction 2 action (B2 goes off to on when B1 is off)
4=CU(-1,1)1,2, ... turn direction 1 action (B2 goes on to off when Bl is off).

Since the whole thing is completely symmetric (there is no reason why B1 should control B2, it could also be the other
way around), you can actually program it to act on ALL edges of both buttons, by adding another 4 conditions:

5=CP(+1,2)1,1, ... turn direction 2 action (B1 goes off to on when B2 is on)
6=CU(+1,2)1,1, ... turn direction 1 action (B1 goes on to off when B2 is on)
7=CP(-1,2)1,1, ... turn direction 1 action (B1 goes off to on when B2 is off)
8=CU(-1,2)1,1, ... turn direction 2 action (B1 goes on to off when B2 is off)

So, you can effectively choose how many pulses you will get for a given turning rate. As you can see, you can get rates
of 1x, 2x or 4x—even 3x if you do one part for only half the changes! Note that for reliability at higher speeds you may
need to reduce the Polllnterval.

By the way, it is with some of these rotary switches where the double condition facility can come in very useful. If you
have a single rotary of this type with also a push button action available, you can program it to adjust both the units and
fractions of, say, a radio receiver. Just use the Flag associated with the button action to choose between one pair of
actions or another, thus, supposing 1,3 to be the button:

1=CP(F+1,3)(+1,1)1,2, ... increment fraction
2=CU(F+1,3)(+1,1)1,2, ... decrement fraction
3=CP(F-1,3)(+1,1)1,2, ... increment integer

4=CU(F-1,3)(+1,1)1,2, ... decrement integer

One last thing. Using several rotaries of this type (that is, with the two signals in different phase relationships to indicate
direction of turning), if they are of the type that have both signals ‘off” in the detent you can save button connections by
making one of them (on each one) common. If you do this you can only turn one of them at a time, but this is probably
a worthwhile restriction if you are getting short of button connections.

22

ADDING OFFSET CONDITIONS

As well as all the above (and below, for Keys) any or all entries in all Buttons and Keys sections of FSUIPC7.INI can
each contain a single condition based on the value of bits, bytes, words or double words in the FSUIPC IPC interface.
These values are addressed by an “offset” value in hexadecimal and include just about anything you can think of about
what is happening in FS.

Just taking some examples, you can make conditions based on:

Whether the aircraft is airborne or on the ground

Whether the engines are running

Whether one or more of specific lights are switched on or off

Whether the gear is up or down

Even whether there are valid radio signals for NAV1, NAV2, GS, ILS LOC

... and so on. The possibilities are endless!

To make good use of this you will need the Programmer’s Guide, which lists all of the offsets. This document is in the
FSUIPC SDK. You’ll find a lot of data in there that you cannot make use of—the conditions here deal with bits or
values in 8-bit bytes, 126-bit words and 32-bit “double words”. You cannot make use of string values, tables ot floating
point values.

You add an offset condition to any Key or Button parameter line in FSUIPC7.INI as follows:
<sequence number>=<offset condition> <usual parameter>
The space between the new condition and the normal parameter is essential.

A simple example will help. Take this button push parameter, designed to toggle the landing gear when the button is
pushed:

1=P1,0,C65570,0
By adding an offset condition we can stop this doing anything when the aircraft is on the ground:
1=W0366=0 P1,0,C65570,0

The inserted part, “W0366=0" specify that the Word (16-bit or 2-byte value) at offset 0366 must be zero for this line to
be obeyed. Offset 0366 contains 0 when the aircraft is airborne, 1 when it is on the ground.

The format of the condition is:
<size><offset><mask><condition>
where
<size> is B for Byte, W for Word or D for Double Word,
<offset> is the FSUIPC offset, an hexadecimal value between 0000 and FFFF,

<mask> is optional, and if given selects one of more bits: specify as &x where ‘x’ is the 8, 16 or 32-bit
mask in hexadecimal. The value in the offset is “ANDed” with this mask before being used,

<condition> is one of:
=value for equality
lvalue for inequality
<value for less than
>value for greater than

and the “value” here is decimal unless preceded by an x (or X) in which case it is hexadecimal
like the offset and mask. FSUIPC will output hexadecimal where a mask is used, otherwise
decimal. All values are treated as unsigned.

The optional mask facility is useful for testing specific bits, as in the case of the light switches in offset 0DOC or the
radio reception details in offset 3300. For example, the offset condition:

W3300&0040!0
is TRUE when the currently tuned NAV1 is for an ILS.

23

The <condition> part is optional too, defaulting to !0 when omitted, so this last example could be abbreviated to:
W3300&0040
For Project Magenta users who sometimes use the default FS autopilot instead one very useful condition is simply:

WO0500

Offset 0500 is non-zero when PM’s MCP is running, zero otherwise, so you can program buttons and keys to operate
PM when it is running, but FS otherwise.

Finally, for clever switching you may want to consider using one button to adjust an FSUIPC offset value which then,
via offset conditions, selects between a number of alternative button and/or key assignments. To assist in this, offsets
66CO0 to 66FF are reserved purely for you to do with as you like. The offset cyclic increment/decrement controls allow,
say, a byte value in offset 66CO0 to cycle through a number of values, then each value selects particular actions for
defined keys or buttons. The entries in Buttons or Keys might look like this:

31=P174,10,Cx510066C0,x00030001
32=B66C0=0 P117,6,C1030,0
33=B66C0=1 P117,6,C1034,0
34=B66C0=2 P117,6,C1038,0
35=B66C0=3 P117,6,C1042,0

Here the value in the Byte at offset 66CO0 is cycled from 0-3, and back to 0, by button 174,10, and this value, in turn,
selects what happens with button 117,6.

These are real examples related to programming of a Go-Flight GF45 unit for different frequency adjustments. Many
fuller examples of all this will appear in the documentation for my GFdisplay program, due shortly. GFdisplay brings
my support for GF devices to a completion with display handling to complement the button programming in FSUIPC.

FOR FURTHER STUDY AND BETTER EXAMPLES

Additional interesting and useful examples of button programming are provided in an Appendix to this current
document. That Appendix was graciously contributed by an enthusiastic FSUIPC user, to whom I am most grateful.

ERRORS IN BUTTON PARAMETERS

When the [Buttons] sections are read (or re-read via the “Reload” button in the FSUIPC Buttons page), the lines are
thoroughly checked. Any that are syntactically wrong are ignored. However, where a line is ignored, an error message
is appended in the form:

... <<ERRORn ...

The error numbers possible here are listed below. You can then correct the line and press “Reload” again to re-check it.
You don’t have to erase the << ERROR ... additions. If the line is now okay, that message will be erased for you. If it is
still in error a new error number may appear.

The errors are:
1 Offset condition: no hexadecimal offset following the size (B, W or D)

2 Offset condition: the offset is too big (more than 4 hex digits)

3 Offset condition: the ‘&mask’ part has no hexadecimal mask

4 Offset condition: the mask is too big (more than 8 hex digits)

5 Offset condition: condition not recognised (not =, !, <, > or space representing !0)
6 Offset condition: comparison value X for hex, not followed by hex value

7 Offset condition: comparison value X for hex, too big (more than 8 hex digits)
8 Offset condition: no decimal or hex value after =, !, < or >.

9 Button operation not specified as H, P, R, U or C

10 Conditional button operation, no P, R or U after the C

11 Too many (...) button conditions

12 Condition joystick number too big

13 Button number omitted in condition (the ,b in (j,b))

14 No matching) found for (condition

15 Button number cannot be > 31 in condition

16 Main button joystick number is too big

17 Main button number is greater than 39

18 Comma (,) missing after main button number

19 The C.r Kor M needed for Control, Key or Macro is missing

20 Unknown formatting, syntax unintelligible

24

Keyboard Programming

FSUIPC’s options dialogue provides a page for programming key presses to assign specific single FS controls. Here we
look at how this programming is encoded in the FSUIPC7.INI file, and how the programming can be extended to
provide multiple controls for a single keystroke combination.

FORMAT OF KEY DEFINITIONS

The key programming is saved in sections in the INI file. For globally operative keys this is called [Keys]. For aircraft-
specific buttons it is [Keys.<aircraft name>]. Up to 1024 separate entries defining key actions can be included in each
section, normally numbered sequentially from 0, provided that the total of the definitions in the Global section and the
largest aircraft-specific section is not greater than 1024.

As with the Button parameters, Key press entries are reloaded each time you change aircraft in Flight Sim, so you can
make changes in the INI file and test them without reloading FS.

The <aircraft name> part of the section heading can be abbreviated (manually, by editing the INI file) so that it applies
to more than one aircraft. FSUIPC will automatically select the first section with a sub-string match — there’s no
concept of “longest match” any more.

The format of each entry in the Keys section is as follows:
n=key,shifts,control,parameter

for a key press action only, or
n=key,shifts,controll,parameter1,control2,parameter2

for a key with press (1) and release (2) actions.

Here ncan run from 0 to 1023 (i.e. maximum 1024 different keystroke actions can be added),
key virtual keycode, as in the FS CFG file (see list above, in the section about Buttons).
Note: If the key press automatic repeats are to be ignored, this code is preceded by the letter ‘N’.

shifts 8 normal
+1 left shift
+2 left control
+4 left alt
+16 tab (an added "shift" to give more combinations)

+32 right shift

+64 Menu key (the application key, to the right of the right Windows key)
+128 right control

+256 right alt

[Note that the Left Tab and Left Alt keys are denoted by opposite bits here than when used
for button programming. Apologies for this, which was a design oversight now too late to
change]

control This is normally an FS control number (as in my lists), or a special FSUIPC number for
additional controls. It can be in decimal, or, preceded by ‘x’ in hexadecimal. The additional
FSUIPC controls range from 1000 to 3000, and also values xcc00zzzz in hexadecimal which
encode the FSUIPC “Offset” controls. See list below for full details.

Alternatively, it can be a Macro reference, in which case it takes the form:
M<file#>:<ref#>

For example M3:4 would refer to macro file 3, macro number 4 in that file. Please see the
section on macros for more details.

It can also be a Lua plug-in reference:
L<file#>:<action>

Where the File number refers to the [LuaFiles] list in the INI, and the action is one of these
letters:

R=Run, K=Kill, S=Set, C=Clear, T=Toggle, D=Debug

25

parameter value to go with control, for "SET" types and some special FSUIPC controls. This also is
normally in decimal, but can be in hexadecimal preceded by ‘x’.

You can add comments following a semicolon (;) at the end of the line, and these will be retained. You can also insert
lines containing only comments, but they need an <Entry number> too, otherwise they may not retain their relative
position. Comments can contain up to 63 characters—longer ones will be truncated if and when the [Buttons] section is
re-written by FSUIPC.

You can do all of this programming directly in the FSUIPC “Keys” page whilst in FS. In fact it is better to do it there,
so you can test it out directly. Note that some of the listed FS controls either do not work, or do not do as you might
suppose! And some seem to be mixed up—for instance the “Zoom Out” and “Zoom In” controls appear to be switched,
even though the Fine variants of these are okay.

There are two reasons you may want to edit the details in the INI file. The first is to make a single button press operate
more than one control. You can specify such actions here, merely by adding the appropriate parameter lines. The
controls will be sent in the order of the parameter entries (i.e. the ‘n’ in “n=...”). You can view all these, and delete
them, in the Keys page on-line, but you cannot edit any other than the first such assignment for that key press.

The second reason is to add FSUIPC offset conditions. The facilities for making Button presses conditional upon
assorted FS internals all apply to Key programming too, and the format and other details are the same as for Buttons.
Please refer to the section above entitled “adding Offset Conditions”.

ERRORS IN KEY PARAMETERS

When the [Keys] sections are read (or re-read via the “Reload” button in the FSUIPC Keys page), the lines are
thoroughly checked. Any that are syntactically wrong are ignored. However, where a line is ignored, an error message
is appended in the form:

...<<ERRORn....

The error numbers possible here are listed below. You can then correct the line and press “Reload” again to re-check it.
You don’t have to erase the << ERROR ... additions. If the line is now okay, that message will be erased for you. If it is
still in error a new error number may appear.

The errors are:

1 Offset condition: no hexadecimal offset following the size (B, W or D)

2 Offset condition: the offset is too big (more than 4 hex digits)

3 Offset condition: the ‘&mask’ part has no hexadecimal mask

4 Offset condition: the mask is too big (more than 8 hex digits)

5 Offset condition: condition not recognised (not =, !, <, > or space representing !0)
6 Offset condition: comparison value X for hex, not followed by hex value

7 Offset condition: comparison value X for hex, too big (more than 8 hex digits)

8

Offset condition: no decimal or Xhex value after =, !, <or >.
20 Unknown formatting, syntax unintelligible
21 Virtual key number not in range 1-255
22 No comma (,) after key number
23 No comma (,) after shift code value
24 Bad control value

26

Additional “FS” Controls added by FSUIPC

All the true FS controls are represented by numbers above 65536. They are listed in the “MSFS Controls” document in
your FSUIPC Documents folder. FSUIPC has augmented these with its own set, programmable for both Button and
Keys, and these utilise lower numbers, currently in the 1000-3000 range. These are:

1001 PTT on (for Squawkbox 3, Roger Wilco or AVC Advanced Voice Client)
1002 PTT off (for Squawkbox 3, Roger Wilco or AVC Advanced Voice Client)
1003 Set button flag (param = 256*joy + btn or JjBb)

1004 Clear button flag (param = 256*joy + btn or JjBb)

1005 Toggle button flag (param = 256*joy + btn or JjBb)

1006 KeySend to WideClients (param = KeySend number, 1-255)

1007 Autobrake Set (param=0 for RTO, 1=off, 2-5 for 1,2,3,Max)

1008 — [was 'Traffic Density Set (param = 0-100 %)', currently not available]
1009 — [was 'Traffic Density Toggle (param = 0—100 %), currently not available]
1010 Spoiler inc (by 512 or amount set in SpoilerIncrement= INI parameter
1011 Spoiler dec (by 512 or amount set in SpoilerIncrement= INI parameter
1012 --

1013 --

1014 --

1015 --

1016 Ap Alt Var Dec Fast (—1000)

1017 Ap Alt Var Inc Fast (+1000)

1018 Ap Mach Var Dec Fast (—.10)

1019 Ap Mach Var Inc Fast (+.10)

1020 Ap Spd Var Dec Fast (—10)

1021 Ap Spd Var Inc Fast (+10)

1022 Ap Vs Var Dec Fast (-1000)

1023 Ap Vs Var Inc Fast (+1000)

1024 Heading Bug Dec Fast (-10)

1025 Heading Bug Inc Fast (+10)

1026 Vorl Obi Dec Fast (—10)

1027 Vorl Obi Inc Fast (+10)

1028 Vor2 Obi Dec Fast (—10)

1029 Vor2 Obi Inc Fast (+10)

1030 Coml1 use whole inc

1031 Coml use whole dec

1032 Coml use frac inc

1033 Coml use frac dec

1034 Com?2 use whole inc

1035 Com?2 use whole dec

1036 Com?2 use frac inc

1037 Com2 use frac dec

1038 Nav1 use whole inc

1039 Navl use whole dec

1040 Navl use frac inc

1041 Navl use frac dec

1042 Nav2 use whole inc

1043 Nav2 use whole dec

1044 Nav2 use frac inc

1045 Nav2 use frac dec

1046 Adfl1 use whole inc

1047 Adf1 use whole dec

1048 Adf1 use frac inc

1049 Adf1 use frac dec

1050 Adf2 use whole inc

1051 Adf2 use whole dec

1052 Adf2 use frac inc

1053 Adf2 use frac dec

1054 Xpndr low NN inc

1055 Xpndr low NN dec

1056 Xpndr high NN inc

1057 Xpndr high NN dec

1058 Freeze pos on

1059 Freeze pos off

1060 Freeze pos toggle

27

1061 Engine 1 Autostart

1062 Engine 2 Autostart

1063 Engine 3 Autostart

1064 Engine 4 Autostart

1065 Throttles off

1066 Throttles on

1067 Throttles toggle

1068 PVT voice transmit on (for Squawkbox 3.0.4 or later)

1069 PVT voice transmit off (for Squawkbox 3.0.4 or later)

1070 Key Press and Release (param is Keycode + Shift code (i.e. enter with + symbol, not calculate), or JsBk)
1071 Key Press/Hold (param is Keycode + Shift code(i.e. enter with + symbol, not calculate), or JsBk)
1072 Key Release (param is Keycode + Shift code (i.e. enter with + symbol, not calculate), or JsBk)
1073 FSUIPC display window toggle

1074 Airline traffic density set

1075 GA traffic density set

1076 Shipping traffic density set

1077 Cloud cover density set

1078 Simple/complex clouds set

1079 --

1080 Wheel trim toggle (for mousewheel trim adjusting) (?)

1081 Wheel trim faster (?)

1082 Wheel trim slower (?)

1083 Wheel trim speed toggle (?)

1084 Lua Kill All

1085 --

1086 FollowMe please (i.e. request) (needs FollowMe 2)

1087 FollowMe cancel (needs FollowMe 2)

1088 FollowMe continue (needs FollowMe 2)

1089 --

1090 --

1091 --

1092 Re-SimConnect (re-initialises SimConnect interface)

1093 Efis ND scale inc (default B738 and A321)

1094 Efis ND scale dec (default B738 and A321)

1095 Efis ND mode inc (default B738 and A321)

1096 Efis ND mode dec (default B738 and A321)

1097 Efis ND map item inc (default B738 and A321)

1098 Efis ND map item dec (default B738 and A321)

1099 Efis VORADFT1 inc (default B738 and A321)

1100 Efis VORADF1 dec (default B738 and A321)

1101 Efis VORADF?2 inc (default B738 and A321)

1102 Efis VORADF?2 dec (default B738 and A321)

1103 Efis 738 ND centre (default B738)

1104 Efis 738 ND arc (default B738)

1105 Efis A321 InHg/hPA toggle (default A321)

1106 Efis A321 ILS mode toggle (default A321)

1107 AP alt change rate toggle (default A321)

1108 Efis ND scale set (parameter 0—7 for 738, 0-5 for A321) (default B738 and A321)
1109 Efis ND mode set (parameter 0-2 for 738, 03 for A321) (default B738 and A321)
1110 Efis ND map item set (parameter 0-3) (default B738 and A321)
1111 Efis VORADF]1 set (parameter 0-2) (default B738 and A321)
1112 Efis VORADF?2 set (parameter 0-2) (default B738 and A321)
1113 Efis A321 InHg/hPA set (parameter 0—1) (A321)

1114 List local panel variables (“L:vars”) in log when change aircraft
1115 IYP Listen On

1116 IYP Listen Off

1117 IYP ComeFly Active

1118 IYP ComeFly Inactive

1119 Xpndr stby (sb3)

1120 Xpndr on/mode ¢ (sb3)

1121 Xpndr toddle (sb3)

1122 Xpndr ident (sb3)

1123 --

1124 Com1/2 tx switch

1125 Key focus restore

1126 Nothing: no action

1127 --

1128 --

28

1129 --

1130 --

1131-1138 Log option controls - see below

1139 --

1140 Throttle Sync off

1141 Throttle Sync on

1142 Throttle Sync toggle

1143 -

1144 RemoteTextMenuToggle

1145 --

1146 -

1147 ResetTCAS: restarts the Al Traffic Scanning

1148 Traffic freeze toggle (not working?)

1149 Traffic freeze on (not working?)

1150 Traffic freeze off (not working?)
These three operate on Al ground traffic in “taxi out” mode.

1151 Auto-Save enable/disable toggle. An additional control to toggle AutoSave on/off.
This is only active once the AutoSave functionality has been activated.

1152 Pause (ms) — this adds a delay in ms. It can be used to insert a delay between key press/releases and mouse
operations (where needed)

1153 Set MaxSteerSpeed

1154 Trigger Auto-save

1155 Reload WASM

1156 Key Focus FSUIPC

The following controls manipulate Logging settings without visiting the Logging tab of the options dialogue:

1131 Log set (parameter sets additional logging options*)

1132 Log clear (parameter clears specified logging options*)

1133 Log toggle (parameter specifies options to be changed*)
* The bits in the parameter specify the options being set/cleared/toggled.
(These are in the same order as the list in the Logging tab):

270 1 Weather

271 2 IPC Writes

272 4 IPC Reads

273 8 Buttons and Keys

274 16 Events (non-axis)

275 32 Axis events

276 64 Lua logging to separate files
277 128 Debug/Trace Lua

278 256 Log Extras

To clear all logging options, use "Log clear" with parameter 511.

1134 Log console on (Note: from 4.859r the focus is restored to FS)
1135 Log console off

1136 Log debug (parameter gives debug instructions, for use only under Support direction)
1137 New log file (close last and start a new one)
1138 Log test options (parameter gives test instructions, for use only under Support direction)

Note that changes made by these controls are NOT saved to the INI file unless the Logging tab is visited whilst the changes
are in use.

29

FSUIPC autopilot controls:

1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945

FSUIPC bank hold off
FSUIPC bank hold on
FSUIPC bank hold set
FSUIPC bank hold toggle
FSUIPC mach hold off
FSUIPC mach hold on
FSUIPC mach hold set
FSUIPC mach hold toggle
FSUIPC pitch hold off
FSUIPC pitch hold on
FSUIPC pitch hold set
FSUIPC pitch hold toggle
FSUIPC speed hold off
FSUIPC speed hold on
FSUIPC speed hold set
FSUIPC speed hold toggle

Project Magenta controls:

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056

PM MCP SPD push on B747
PM MCP HDG sel on B747
PM MCP ALT push on B747

PM MCP FD2 off

PM MCP FD2 on

PM MCP A/T on

PM MCP A/T off

PM MCP THR mode button
PM MCP SPD mode button
PM MCP Mach/IAS sel

PM MCP FLCH mode button
PM MCP HDG mode button
PM MCP VNAYV mode button
PM MCP LNAYV mode button
PM MCP LOC mode button
PM MCP APP mode button
PM MCP ALT mode button
PM MCP VS mode button
PM MCP AP1 (L) button

PM MCP AP2 (C) button

PM MCP AP3 (R) button
PM MCP FDI1 off
PM MCP FDI on

PM MCP AP Disc (not 747)
PM MCP AP Eng (not 747)
PM MCP AP Disc (747 only)

PM AB LS button

PM AB STD QNH rel (push)
PM AB STD QNH set (pull)
PM AB SPD button push
PM AB SPD button pull

PM AB HDG button push
PM AB HDG button pull
PM AB ALT button push

30

2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124

PM AB ALT button pull
PM AB VS button push
PM AB VS button pull
PM AB EXPED button
PM AB TRKFPA button

PM PFD Decision Ht Dec
PM PFD Decision Ht Inc
PM MCP Hdg Dec 1

PM MCP Hdg Inc 1

PM MCP Hdg Dec 10
PM MCP Hdg Inc 10
PM MCP Alt Dec 100
PM MCP Alt Inc 100
PM MCP Alt Dec 1000
PM MCP Alt Inc 1000
PM MCP Spd Dec 1/.01
PM MCP Spd Inc 1/.01
PM MCP Spd Dec 10/.10
PM MCP Spd Inc 10/.10
PM MCP V/S Dec 100
PM MCP V/S Inc 100
PM MCP Crs Dec 1

PM MCP Crs Inc 1

PM QNH Dec 0.01/1

PM QNH Inc 0.01/1

PM ND Range Dec

PM ND Range Inc

PM ND Mode Dec

PM ND Mode Inc

PM ND2 Range Dec

PM ND2 Range Inc

PM ND2 Mode Dec

PM ND2 Mode Inc

PM AB ND ILS Mode

PM ND Map Arc Mode
PM ND Map Ctr Mode

PM ND Rose Mode

PM ND Map Plan Mode
PM ND Range 10

PM ND Range 20

PM ND Range 40

PM ND Range 80

PM ND Range 160

PM ND Range 320

PM ND Range 640

PM ND VOR display

PM ND NDB display

PM ND WPT display

PM ND ARPT display

PM ND DATA display

PM ND POS display

PM AB ND VORI on

PM AB ND ADFI on

PM AB ND VORADF1 off
PM AB ND VOR2 on

PM AB ND ADF2 on

PM AB ND VORADF?2 off
PM AB ND Metric

PM AB ND HDGVS/TRKFPA
PM AB THR TOGA

PM AB THR FLX/MCT
PM AB THR CLB

31

2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2950
2951
2952
2953
2955
2956
2958
2966
2967
2968
2969
2971
2972
2974
2982
2983
2984
2985
2987
2988
2990
2994
2995
2996

PM AB THR IDLE

PM AB THR REV IDLE
PM AB THR MAX REV
PM AB ND2 ILS Mode

PM ND2 Map Arc Mode
PM ND2 Map Ctr Mode

PM ND2 Rose Mode

PM ND2 Map Plan Mode
PM ND2 Range 10

PM ND2 Range 20

PM ND2 Range 40

PM ND2 Range 80

PM ND2 Range 160

PM ND2 Range 320

PM ND2 Range 640

PM ND2 VOR display

PM ND2 NDB display

PM ND2 WPT display

PM ND2 ARPT display

PM ND2 DATA display

PM ND2 POS display

PM AB ND2 VORI on

PM AB ND2 ADFI on

PM AB ND2 VORADF]1 off
PM AB ND2 VOR2 on

PM AB ND2 ADF2 on

PM AB ND2 VORADF?2 off
PM AB ND2 Metric

PM AB ND2 HDGVS/TRKFPA

PM EICAS Show Controls
PM EICAS Standby Gauge
PM EICAS Page Dec

PM EICAS Page Inc

PM EICAS Synoptic Dec
PM EICAS Synoptic Inc
PM AB ND ILS Mode

PM ND Plan Wpt Dec

PM ND Plan Wpt Inc

PM Elec All Toggle

PM Elec PFD Toggle

PM Elec ND Toggle

PM Elec EICAS Toggle
PM Elec PFD2 Toggle

PM Elec ND2 Toggle

PM Elec Stdby Toggle

PM Elec All ON

PM Elec PFD ON

PM Elec ND ON

PM Elec EICAS ON

PM Elec PFD2 ON

PM Elec ND2 ON

PM Elec Stdby ON

PM Elec All OFF

PM Elec PFD OFF

PM Elec ND OFF

PM Elec EICAS OFF

PM Elec PFD2 OFF

PM Elec ND2 OFF

PM Elec Stdby OFF"

PM Whazzup keys (by Param), see PM offsets list, 542E
PM Quickmap keys (by Param), see PM offsets list, 542C
PM GC keys (by Param), see PM offsets list, 542A

32

2997

2998

2999

PM CDU keys (by Param), see PM offsets list, 5428
Note: all the “Keys” inputs to PM modules provide efficient ways of directing specific keypresses to them, wherever they may be on
the Network. The parameter in these is the keystroke code (see the list earlier in this document) , plus specific PM-
defined values for shifts, thus:

256 for Shift, 512 for Ctrl, 1024 for Alt.

You don’t need to worry about changing other bits when two codes are the same—FSUIPC takes are of that
automatically.

PM MCP Kcodes (by Param), see Pm offsets list, 04F2
This way of controlling the PM MCP may offer some features not found elsewhere. The parameter is
the number used in the Elan Informatique “Knnn” codes normally sent to the MCP via a serial
connection. Please refer to the PM offsets document for further information.

Project Magenta GC Controls. Param specifies action, (see the list in the Project Magenta “Offsets”
publication)

FSUIPC Offset Controls:

x0100zzzz
x0200zzzz
x0300zzzz
x0500zzzz
x0600zzzz
x0700zzzz
x0900zzzz
Xx0A00zzzz
x0B00zzzz
x0D00zzzz
X0E00zzzz
x0F00zzzz
x1100zzzz
x1200zzzz
x1300zzzz
x2100zzzz
x2200zzzz
x2300zzzz
x3100zzzz
x3200zzzz
x3300zzzz
x4100zzzz
x4200zzzz
x4300zzzz
x5100zzzz
x5200zzzz
x5300zzzz
x6100zzzz
x6200zzzz
x6300zzzz
x7000zzzz
Xx7400zzzz
x7800zzzz
x7C00zzzz

Offset Byte Set (offset = zzzz), hexadecimal

Offset Word Set (offset = zzzz), hexadecimal

Offset Dword Set (offset = zzzz), hexadecimal

Offset Byte Setbits (offset = zzzz), hexadecimal

Offset Word Setbits (offset = zzzz), hexadecimal

Offset Dword Setbits (offset = zzzz), hexadecimal

Offset Byte Clrbits (offset = zzzz), hexadecimal

Offset Word Clrbits (offset = zzzz), hexadecimal

Offset Dword Clrbits (offset = zzzz), hexadecimal

Offset Byte Togglebits (offset = zzzz), hexadecimal

Offset Word Togglebits (offset = zzzz), hexadecimal

Offset Dword Togglebits (offset = zzzz), hexadecimal

Offset UByte Increment (offset = zzzz), hexadecimal *

Offset UWord Increment (offset = zzzz), hexadecimal *

Offset UDword Increment (offset = zzzz), hexadecimal *

Offset UByte Decrement (offset = zzzz), hexadecimal *

Offset UWord Decrement (offset = zzzz), hexadecimal *

Offset UDword Decrement (offset = zzzz), hexadecimal *

Offset SByte Increment (offset = zzzz), hexadecimal *

Offset SWord Increment (offset = zzzz), hexadecimal *

Offset SDword Increment (offset = zzzz), hexadecimal *

Offset SByte Decrement (offset = zzzz), hexadecimal *

Offset SWord Decrement (offset = zzzz), hexadecimal *

Offset SDword Decrement (offset = zzzz), hexadecimal *

Offset Byte Cyclic Increment (offset = zzzz), hexadecimal *

Offset Word Cyclic Increment (offset = zzzz), hexadecimal *

Offset Dword Cyclic Increment (offset = zzzz), hexadecimal *

Offset Byte Cyclic Decrement (offset = zzzz), hexadecimal *

Offset Word Cyclic Decrement (offset = zzzz), hexadecimal *

Offset Dword Cyclic Decrement (offset = zzzz), hexadecimal *

Offset Float32 Set/1000 (offset = zzzz): the parameter is divided by 1000
Offset Float64 Set/1000 (offset = zzzz): the parameter is divided by 1000
Offset Float32 Inc/1000 (offset = zzzz): the parameter is divided by 1000
Offset Float64 Inc/1000 (offset = zzzz): the parameter is divided by 1000
(For “decrements” use a negative parameter in the increment controls)

* The fixed point increment/decrement values operate on Unsigned (U) or Signed (S) values, and have a parameter
with the unsigned or signed limit in the upper 16 bits and the increment/decrement amount (always unsigned) in the
lower 16 bits. This applies even to the Dword (i.e. 32 bit) inc/dec controls.

FSUIPC directly assigned axis controls

All of the "direct to FSUIPC calibration" axes are effectively added FSUIPC controls and can be sent using

these values:

64101 Aileron 64112 Throttle4 i

64102 Elevator 64113 Mixturel 64115 Mixture3
64103 Rudder 64114 Mixture2 64116 Mixture4
64104 Throttle 64117 PropPitchl
64105 PropPitch 64118 PropPitch2
64106 Mixture 64119 PropP!tch3
64107 LeftBrake 64120 PropPitch4
64108 RightBrake 64121 EIev'atorTrlm
64109 Throttlel 64122 Spoilers
64110 Throttle2 64123 Flaps
64111 Throttle3 64125 Reverser

33

64127 Aileron Trim 64138 SlewSide
64131 Cowlflaps3

64128 Rudder Trim 64139 SlewAhead

64129 CowlFlaps1 64132 Cowlflapsa 64140 SlewHeading

64130 Cowlflaps2 64133 PanHeading 64141 Reverserl
64134 PanP.ltch 64142 Reverser2
64135 PanT|.|t § 64143 Reverser3
64136 SteeringTiller 64144 Reverserd
64137 SlewAlt

Adding Simulator variables (simvars) to FSUIPC offsets

You can add any simulator A-type variable (called simvars) to an FSUIPC offset free for general use (i.e. such as those
starting at offset 0x2544, 0x2644, 0x2744, 0x66C0 or 0xA000). For a complete list of available simvars, please consult
the MSFS documentation at:

https://docs.flightsimulator.com/html/Programming_Tools/SimVars/Simulation Variables.htm

Simvars are added to offsets from a file called myOffsets.txt which must be located in your FSUIPC7 installation
folder. Each line of the file must be either a comment, starting with '//', or an offset entry of the form:
offset, size, simvar, type, units [, w]
where
offset is the FSUIPC offset that will hold the simvar value
size is the size of the the data held at the offset
simvar is the name of the simulator variable
type is the simvars data type as defined by MSFS, and must be one of the following string identifiers:
132 : for 32-bit integers
164 : for 64-bit integers
F32 : for 32-bit floating-point numbers
F64 : for 64-bit floating-point numbers
S8, S32, S64, S128, S256, S260 : for string data types, with the number indicating the max length
LLA : 3*32-bit floating-point numbers (Latitude/Longitude/Altitude)
XYZ : 3*64-bit floating-point numbers (values representing X,Y,Z positions)
units are the units of the simvar. This must be as defined by MSFS or a compatible unit type
(see the MSFS documentation for the list of compatible unit types)
w : indicates that the simvar is also writable, i.e. writing to the offset will attempt to update the simvar. Please
check the MSFS documentation to confirm the simvar is writable before using this option.

Note that the size can be smaller than the type an an appropriate conversion will be performed, e.g. an 132/Bool or
[32/Enum can fit in 1 byte - you don't need 4 bytes (32 bits).

Note also that the offset needs to be bound to the size. This means that if the size is 8, the last offset digit needs to be 0
or 8, if the size is 4, the last offset digit needs to be 0, 4, 8 or C, etc (but not for string types).

Here is an example of the contents of a myOffsets.txt file:

// offset, size, simvar, type, units [, w]

0x66C0, 1, ELECTRICAL MASTER BATTERY:2,I32, Bool, w
Ox66Cl, 1, ATC HEAVY, I32, Bool, w

Ox66C2, 2, COM VOLUME, I32, Percent

Ox66C4, 1, COM SPACING MODE, I32, Enum, w

0x66C6, 2, TRANSPONDER CODE:1, I32, BCOl6, w
0x66C8, 2, TRANSPONDER STATE, I32, Enum, w

The myOffsets.txt file is only read at FSUIPC?7 start-up, so to load any changes to this file you must restart FSUIPC7
(no need to restart MSFS).

It is suggested that you open the FSUIPC7 logging console (Log — Open Console menu item) when starting to use this
facility or when making any changes. The log should tell you if the entries in this file are valid or not, and you will also
see errors from SimConnect if the variable does not exist (be aware that not all of the simulator variables defined in the
MSFS documentation actually exist!) or if there is a problem with the units or type.

34

https://docs.flightsimulator.com/html/Programming_Tools/SimVars/Simulation_Variables.htm

Macro Controls

FSUIPC will read any file in its installation folder which has file type “mcro”. Such files contain definitions of
additional controls to be listed and assignable in FSUIPC's Keys, Buttons and Axis Assignments dialogues. All macro
files are also re-read and re-installed whenever the Reload button in any of those three dialogues are used.

It is important that the file name (xxxx.mcro) is limited to 16 characters maximum, (plus the ".mcro"). This will be used
as part of the name of the added controls in the drop-downs. Best to keep the names short and to the point—probably
the name of the program or program function for which the controls are being added.

Inside a macro file there should be just one section called [Macros]. This must contain definitions of numbered controls,
with names also up to 16 characters. These names only have to be unique in that file.

Here is an example, here for a possible Project Magenta glass cockpit ND Mode switch:

[Macros]

1=MAP Capt=C2999,1
2=NAV Capt=C2999,2
3=VOR Capt=C2999,3
4=PLN Capt=C2999,4
5=APP Capt=C2999,5
6=CTR Capt=C2999,6
101=MAP F/0=C2999,101
102=NAV F/0=C2999,102
103=VOR F/0=C2999,103
104=PLN F/0=C2999,104
105=APP F/0=C2999,105
106=CTR F/0=C2999,106

Note that the numbers on the left do not have to be contiguous, but must be in the range 1-999 inclusive. These will be
used internally, and in the FSUIPC7.INI file, to identify the control within the file.

Supposing the example above occurred in a file called ‘PM GC.mcro’. The names which would then appear, in proper
alpha sequence in the FSUIPC drop-downs, would be:

PM GC: APP Capt
PM GC: APP F/O
PM GC: CTR Capt
PM GC: CTR F/O
PM GC: MAP Capt
PM GC: MAP F/O
PM GC: PLN Capt
PM GC: PLN F/O
PM GC: VOR Capt
PM GC: VOR F/O

The value assigned to each control is either another control (any FS or FSUIPC-added control, including offset controls
and even macro controls—see later), or a Key press. i.e:

Either: Cn,p (control number, parameter, optionally in hex with a preceding x)
Or: Kk,s (keycode and shifts).

Both of these are exactly as already defined for Button controls—see the earlier section on Button programming.

Macro Control References

Macro controls are represented internally in the same sort of way as FSUIPC offsets controls, by using high-value bits
in the control number. However, the representation in Macro files and in the INI file is as follows:

Mm:n
where m if the Macro File number (see below) and n is the control number from the file, as described above.

Macro file numbers are assigned by FSUIPC when it loads the file. These are remembered in the INI file in a new
section [MacroFiles]. For example, in the above case you might get:

[MacroFiles]
35

1=PM GC
making “PM GC.mcro” file number 1 for all reference purposes.

It is important to note that different users will have a different selection of macro files in different orders. If they wish to
exchange Button assignments they will need to re-assign all macro controls after making their [MacroFiles] sections the
same, or at least the same for those files they have in common.

Multiple actions in one macro control

A macro control is not limited to having only one resulting action. If more than one action is required several lines are
used in the definition, as follows:

n=<name>
n.1=actionl
n.2=action2
etc.

For an example consider a ‘Menu.mcro’ file containing these definitions:

[Macros]
1=Display
1.1=K79,12 ;Tab O
1.2=K69,8 ;E
1.3=K68,8 ;D
2=FSUIPC
2.1=K68,12 ;Tab D
2.2=K70,8 ;F

This adds two controls, ‘Menu: Display’ and ‘Menu: FSUIPC’. The first uses Tab+O E D keystrokes to call up the FS
display settings dialogue, the second uses Tab+D F to call up the FSUIPC options.

Note that there’s a limit of 2000 numbered parameters in total in the macro file—so, for instance, 999 macro numbers
(1-999, the maximum) with an average of two actions each would be just two shy of the limit. Large files aren’t good in
any case as the drop-down list will be full of the added controls all beginning with the same filename. Best to split into
functional groups with meaningful filenames, to make the controls easier to locate.

Parameter passing

Normally, and certainly in all the above examples, any parameter set for a Macro Control, when assigned in the Buttons
or Keys dialogues, would be discarded as not relevant. However, there is a facility to allow it to be used.

If the parameter part of any of the controls defined in the macro is omitted, the parameter value from the calling macro
is substituted.

As a rather silly example, if you wanted a general PM GC control but not the one named already in FSUIPC, you could
define it as

7=by param=C2999

This would appear in the drop-downs as ‘PM GC:by param’, and the parameter assigned by the user would be used in
the C2999 operation. Note that in multiple-line definitions, the same parameter value substitutes for every omitted
parameter value.

One interesting consequence of this is the possibility of defining axis controls. To make another silly example, if I
define a macro like this:

8=Flaps=C66534 ;FS control 66534 is Axis Flaps Set

and then assign it to an axis in the Axis assignments dropdown, the axis I've assigned will operate exactly as the Axis
Flaps Set axis.

This may not seem so futile when you realise that you can have multiple line mixtures of controls and key presses also
produced by the same Macro. I'm sure there would be wealth of ideas for using this ‘feature’ (which actually fell out of
the implementation by accident rather than by design!).

36

Mouse macros

Mouse macros are currently not available in FSUIPC7, pending facilities to be implemented in the SDK.

Gauge local variable access (L:vars), by macro

Local named panel variables (“L:<name>"), which I’ll refer to as “Lvars”, are now accessible using FSUIPC, but only
if you have opted to install the FSUIPC WASM module during installation. This WASM module provides FSUIPC
with access to both lvars and hvars. The WASM module also needs to be enabled — you can do this using the Add-ons
— WASM — Enable menu option. You only need to do this once.

With the WASM module installed and enabled, Ivars can now be listed in the Log, added to free user offsets for reading
and writing, written to via Macros, and manipulated with both reads and writes through extensions to the ipc Lua
Library. Hvars can be listed and activated.

The log listing is obtained for the currently loaded aircraft panels by a new assignable control in the drop-down lists
called “List local panel variables”. You can also use the list functions in the WASM menu (under the Add-ons menu)
to list available lvars, list available hvars, as well as set lvars and activate hvars.

Note that all FSUIPC can do is list what it finds. Whether the values are of any use or not is questionable—they are
internal to the gauge and how they are used, manipulated, and so on, will vary enormously. By all means try things if
you wish, but don’t assume the solution is there waiting for you. Also, some lvars are classified as read-only and cannot
be updated, although FSUIPC cannot distinguish between a read-only and a writeable Ivar. You will just have to test to
see if the lvar can be updated.

Please see the FSUIPC WASM section later in this manual for further details on using the FSUIPC WASM module for
Ivar/hvar access.

Macros to change Lvars

The macro facility to operate Lvars can only be used by editing macro files and building them manually. The format is:
N=L:name=ACTION

Where ACTION must be one of: Set, Inc, Dec, Shits, Cbits, Cyclic or Toggle (but only the first 3 letters are needed):

Set copies the parameter in the Macro invocation to the identified Lvar. Alternatively, a value can be given
explicitly here, by “Set,n”. Values are limited to the normal parameter range, —32768 to 32767.

Inc increments the value, and here the parameter (explicit or supplied) gives the upper limit, which can be
equalled but not exceeded.

Dec decrements the value, with the parameter setting the lower limit.

Sbits sets bits into the value, assuming it is a 32-bit integer, according to the parameter (i.e OR's the
parameter into the value).

Cbits clears bits from the value, assuming it is a 32-bit integer, according to the parameter (i.e AND's the
value with the inverse of the parameter).

Cyclic is the same as Inc, but after the limit is reached the next value is 0.
Toggle changes the value to zero if it is non-zero, or 1 if it is zero.

The Lvar name has a limit of 56 characters.

The multi-line macro format can still be used with the Lvar macros, as follows:

N=L:name
N.1=actionl
N.2=action2
... etc.

However, unlike the usual multi-line macros, those using an L:Var cannot be mixed with any other parameter types or other L:Vars.
The single L:Var identifier is the actual macro name as well, so this prevents such complexity.

37

Macros to activate Hvars

The macro facility to activate Hvars can only be used by editing macro files and building them manually. The format is:
N=H:name=Set

Note that, unlike Lvars, Hvars have no associated value, and the only action that can be performed on the m is to
activate them, which is achieved using the Set command. No parameter is needed or used.

Lua access to Lvars and Hvars

The Lua facilities are ipc.readLvar, ipc.readLvarSTR, ipc.writeLvar, ipc.writeLvarSTR, ipc.getLvarName, ipc.getLvarld,
ipc.activateHvar and ipc.reloadWASM. These are all described in the updated Lua library documentation, and a sample Lua plug-
in is provided demonstrating their use.

Add-on Custom Events

FSUIPC includes facilities for assigning buttons and keys to MSFS add-on custom events. These are named events (FS
controls) implemented in add-ons via SimConnect facilities. Custom event names always contain a period (.) and this
distinguishes them from MSFS internal events/controls.

The events to be made assignable are listed in '.evt' files placed in the FSUIPC installation folder. Up to 128 such files
will be recognised, each one containing no more than 256 entries defining a custom event name. The format of each
file is

[Events]
O=name.of.eventl
1= ..

etc.

Numbering can be 0-255 or 1-255, but the first omission terminates the list as far as FSUIPC is concerned.
The assignments can then be made in the normal drop-down lists in FSUIPC.

Event files for MobiFlight events are included (if you opted to install them during the installation process) in a sub-
folder of your FSUIPC?7 installation folder called EventFiles. To use any of these event files, simply copy (or move)
them from the EventFiles sub-folder to the main FSIUPC?7 installation folder (i.e. up one level). Note that you must
have the MobiFlight WASM module installed to use these events.

To determine the actual control number of events defined in event files (e.g. for use with the Iua ipc.control function)
you can use the following formula:

control number = 32768 + (event file index)*256 + event index number

where event file index is the index number of the event file (in your FSUIPC7.ini, under [EventFiles]) and event index
number is the index number if the event in the event file. So, the first event in the first event file will have a control
number of 32768, the second event 32769, first event in the second file as 33024. etc

38

Automatic running of Macros and Lua plugins

By some editing in the INI file, you can arrange for one or more Macros or Lua plugins to be executed, in order,
automatically whenever the current aircraft is changed (or, indeed, first loaded), or a specific named aircraft (or Profile)
is loaded.

This allows switches, offsets, and other things to be set specifically for an aircraft (or aircraft type, for Profiles) when it
is first loaded.

This is done by adding new sections to the INI file with the title{
[Auto]
or
[Auto.xxxX...]

where the xxxx part is the profile name when profiles are being used.

These Auto sections thus parallel the Keys and Buttons sections -- the naming and selection follows the same system.
The generic [Auto] section is carried out for a// aircraft changes whilst the specific ones are only applied to a matching
profile.

Each Auto section contains a series of numbered lines (1=..., 2=... etc) each of which is either a Lua command, or a
Macro call. For example:

[Auto.737]
1=Lua SetMyOffsets
2=737 OHD:Air Allbleeds

When Lua calls run a plug-in which doesn't self-terminate, the plug-in thread still running is killed automatically on an
aircraft/profile change.

39

Axis Assignments

Axis assignments are saved in the [Axes] section, or [Axes.<aircraft name>] for aircraft specific assignments. Generic
aircraft assignments can be made using the same parameter and name shortening as for the Buttons and Keyboard
sections.

The polling interval can be changed by a parameter
PollInterval=10
inserted into the main [Axes] section. The units are milliseconds, 10 being the default.
The format of the axis parameters in these sections is as follows:
For the main axis entry (explanation of values below):
n=ja,(R)delta(/delay)
where the parentheses merely show optional parts, and

j=joystick # (0 to 18, 16 to 18 being PFC)

a = axis (XYZRUVSTPQMN)

R is only present when "Raw" mode is selected

delta is the delta value (eg 512, or 1 for Raw mode and POVs)
/delay is an optional delay*, in milliseconds

When axis controls are assigned (the left part of the options), this is extended by the definition of the controls:
n=ja,(R)delta(/delay),ForD,ctl1,ctl2,ctl3,ctl4

where
ForD is an F for "FS control" or D for "Direct to FSUIPC calibration"
ctll to ctl4 are the control numbers, or zero where unassigned. For Direct mode, these are the calibration
indices, 1-4 on Page 1 of calibrations, 5-8 on page 2, etc. Numbers 45-48 are the “dual” controls, equating to
others depending on whether FS is in flight mode or Slew mode.

* FSUIPC can apply delays to any axis assigned through its Axis Assignment facilities. The delay is limited to a
minimum of 2 x the axis polling interval (which defaults to 10 mSecs) and a maximum of 200 x this interval
(i.e. 2 seconds with the default polling interval).

Delays for axes have to be edited in the INI file. There is no facility to change them or even see them in the
option screens. Delays of 200 mSecs or more should be reasonably accurately maintained most of the time, but
short ones could vary quite a bit, the smaller you set them, because of the granularity of the polling interval and
the sharing of the processor with other things going on in FS.

Here's an example of an axis assigned to the FSUIPC Spoiler, with a 1 second delay:
0=0Y,256/1000,D,22,0,0,0

If the axis is programmed to send controls based on the axis passing through zones (the right side of the options), there
will also be entries for each such assignment, thus:

n=ja,UDorB(R),low,high,ctl,param
where

UDorB is U for Up, D for Down or B for Both

R optionally specifies Repeat

low and high give the axis values for the zone

ctl and param are the Control numbers, and Parameter where used.

Here's an example for a Gear lever:

1=0Z,256/500
2=0Z,U,6400,16383,66079,0
3=0Z,D,-16384,-13783,66080,0

Note that the delay option (here half a second) still goes on the main axis entry, the one defining the delta (and "Raw"
mode if applicable).

40

You can edit the INI file whilst FS is running, then simply going to the Axis Assignment options page and clicking the
reload button at the bottom of the window.

The repeat rate of controls assigned to axes in this "range assignment" area can be changed. The parameter for this goes
into the relevant [Axes] section of the FSUIPC7.INI file, and is:

RangeRepeatRate=10

with the default being 10 per second as shown. The range is 1 to 100, but be aware that this is approximate, depending
on other loads on FS, and will vary as much as 30% cither way.

You can also exclude axes movements from being recognised in the dialog permanently by using the IgnoreThese
parameter in the relevant [Axes] section This can be used to list a number of axes which are to be ignored by FSUIPC in
the Axis Assignment tab. This is to deal with faulty axis signals (usually from a dodgy potentiometer) and thus
preventing the others from being registered on the screen ready to program. The parameter takes this form:

IgnoreThese=j.a, j.a, ...

listing the joystick number (j) and axis letter (a) of each axis to be ignored. To make it easy, you can edit the INI file
whilst in the Axis Assignment dialogue and simply press “reload all assignments” to activate the changes.

This functionality is similar to what occurs if you press the Ignore Axis button in the Axis Assignment tab, except for
the fact that those would be temporary and only valid for the current session, whereas using this ini parameter makes
this permanent.

Note that the action of ignoring axes are only ignored in the dialogue—if they are already assigned the
assignment will still be effective.

Additional parameters to scale input axis values

Axis values assigned in FSUIPC can be arithmetically adjusted before being passed onto FSUIPC calibration (or to FS
via FS controls). To do this you assign the axis as normal, then edit the FSUIPC7.INI file. Find the axis assignment
there, in the relevant [Axes] section, and add one or both of these parameters to the end:

,*<number> to multiply the axis value by <number>. This can be a fraction, such as 0.5 (to divide by 2),
and it can be negative, to reverse the axis direction. Fractions can be expressed to 7 decimal
places.

,f<number> or -<number>
to add or subtract a number (an integer, no fractions) to or from the value.

If both parameters are given, the multiplication must come first, and is performed first. The resulting value is
constrained to be in the range -16384 to +16383 except when the assignment is to an offset, where no restriction is
imposed..

As an example, if the normal input range of an axis is -16384 to + 16383 and you only want the positive half, but need
to still use the whole of the lever movement:

,¥0.5,+8192

would be added to the assignment. The *0.5 changes the range to -8192 to +8191, and then adding 8192 gives 0 to
+16383.

After editing, just tell FSUIPC to reload the axis assignments (a button on the Axes page). You won't see the results
there, but you will in the calibrations.

Special scaling for axis operation via offsets 3BA8-3BC4 (the "PFC" axes)

Axis values written to the erstwhile "PFC axis" offsets, 3BA8§-3BC4, are now automatically ranged if RAW mode is not
selected and the axis has not yet been assigned. This makes those offsets much more suitable to use by additional
hardware which is not recognised by Windows as a joystick type, or (especially) to using any sort of joystick axes from
a WideClient application or Lua plug-in.

The default range is still assumed as 0—127 (i.e. 7 bits), which suits the PFC axes, but this is expanded to anything from
255 (8 bits) to 65535 (16 bits). You just need to make sure your program or device supplies the highest value so the
range is set correctly before making any assignment to the axis in FSUIPC. Note that the values are still assumed to be
always positive, so you may need to adjust them, by program or by using the multiplier/add parameters in the INI after
assignment.

41

The range is saved at the end of the relevant axis assignment line in the relevant FSUIPC [Axes] section as ",Rn" where
n =1 for 8 bits, up to 9 for 16 bits. This will of course only apply to joysticks 16—18 as these are the joystick numbers
applied to these offsets. This parameter can also be added manually for already-assigned axes on joysticks 16—18.

42

Programs: facilities to load and run additional programs

FSUIPC can, as an extra, cause other programs to be run each time you load and run Flight simulator. Details of what
programs to be run are provided in an additional section in the FSUIPC7.INI file. This section cannot be edited in the
on-line FSUIPC options dialogues. You need to edit the details directly in the INI file.

The additional section is
[Programs]

and can contain up to 32 requests to run other programs—up to 16 “Run” parameters Runl to Runl6, and up to 16
“Runlf” parameters, Runlfl to Runlfl6. Both sets are otherwise identical in format. The only difference is that the
Runlf programs are not run if they appear to be already running. The ordinary “Run” programs will be loaded without
such checking.

The format is simply:

RunN=(Options,)<full pathname of program to be run>
or RunlfN=(Options,)<full pathname of program to be run>

where N runs from 1 to 16. Details of options are given below, but if none are required the parameter simplifies into just
the full pathname.

For example: Runl=D:\RadarContact\RCV4.exe
might be used to run Radar Contact version 4.

If the program or path name contains spaces or needs command-line parameters, then these can be included by
enclosing the program path in quotes, so that the space(s) needed don't cause problems. You may also need to include
quotes around the parameters if they includes spaces.

For example: Run2="c:\Program Files\epic\loadepic” “fs98;jet"

The programs are loaded in order of the run number, 1-16. If a mixture of Run and Runlf parameters are given, the
order is Runl, RunIfl, Run2, RunlIf2, and so on.

The Options you can use are as follows:

HIDE tries to get the program to hide itself when it runs. This is only possible if the program defines
its window to use default settings, so it isn’t very useful for many programs, unfortunately.

MIN

MAX similar considerations as for HIDE apply to these options, to MINimize or MAXimize the
resulting programs window.

HIGH runs the program at higher priority than FS. Use with care! Messing about with priorities
doesn’t work well in all circumstances, and FSX may not like it much.

CLOSE closes the program tidily (if possible) when FS is terminated.

KILL forcibly terminates the program, if possible, when FS is terminated.

LOW runs the program at IDLE priority. Depending on what the program does, this may actually
effectively stop it until you direct user focus to it, as FS tends to soak up all Idle time.

READY delays loading and running the program until FS is up and ready to fly, and FSUIPC can supply

valid data through its IPC interface. (This parameter may, of course, result in the programs
being run in a different order to that specified by the Run number).

DELAY[=n] delays the running of the program by the number of seconds given, (integer between 1 and 60),
otherwise 10 seconds by default.

AM=n A processor code affinity mask can be specified for each program individually. This is by
inserting an extra parameter in the form:
AM=n with n in decimal, or
AM=Xn with n in hexadecimal.

43

file:///c:/epic
file:///c:/Program

For example:
Run1=AM=x52,CLOSE,C:\PM\PFD.EXE

Of these really only CLOSE, KILL, READY and AM= are of general use. If you want to apply more than one option,
list them separated by commas, but no spaces. For example:

RunIf1I=READY ,KILL,AM=82,D:\FS2002\WeatherSet.cxe

Assignment of additional axis controls
(Reverser, Aileron and Rudder Trims, and Cowl Flaps)

There are no axis controls provided in FS for jet thrust reversing nor for aileron or rudder trim or even for setting the
cowl flaps. To get around this, and for other axis assignments not possible in FS’s menus, please check the Axis
Assignment facilities in the FSUIPC options. You’ll find a lot more axis type controls you can assign there, and by
directing the Aileron Trim, Rudder Trim and Cowl Flaps to FSUIPC’s own calibrations, they can be operational within
minutes. FSUIPC’s Joystick section (on page 7 or 8) deals with these.

The Reverser control is special to FSUIPC and can be assigned and calibrated in the same way. Additionally there’s
another controlling parameter:

MaxThrottleForReverser=0

This controls the interlock—the reverser will not engage until all throttles are reduced to this setting (normally 0, or
idle). You can try a non-zero value here if you cannot calibrate your throttles to produce a stable idle zero.

Multiple Joysticks for Multiple Pilots

FSUIPC’s axis assignments allows any of your joystick axes to be assigned to any of FS’s or FSUIPC’s axis controls,
and there’s no restrictions on how many you can assign to any of them. So that’s the first problem solved — you can
assign two sets of yokes, rudders, whatever, to the same controls.

Both FSUIPC and FS take notice of the last movement in an axis. They don’t “poll” them to get regular inputs, but only
see changes coming from them. So both will see the last change from multiple axes. However, that might be from an
unwanted jitter or small accidental movement. So, provided you assign your axes for Direct FSUIPC Calibration (as
opposed to an FS control), FSUIPC now arbitrates, selecting the axis with the highest deflection (defined here as a
difference from zero).

Note, however, that it still only sees axes when they change, so even if one axis is held at an large deflection, once
another axis for the same control moves to a similar or higher position, that takes control then even if it moves lower
than the held on—the latter is effectively “out of it” until it is moved.

Note that you will need to calibrate all controls so that the ones controlling the same values are as close as possible in
range and response. Do this first in Windows Control Panel, then, after making the above adjustments and assignments,
in FSUIPC. Calibrate dead zones at the ends (and in the centre for aileron, elevator and rudder) to “cover up” any
discrepancies—in other words, calibrate for the worst of each.

HELICOPTER PITCH and BANK TRIM facilities

A facility to operate pitch and bank trims on helicopters is provided. This uses the normal FS elevator and aileron trim
controls (and axes) to modify the end value on the “Y” (elevator) and “X” (aileron) axis of the cyclic. To use this you
need to ensure that the axes are calibrated through FSUIPC (as the elevator and aileron axes respectively), and add

ApplyHeloTrim=Both

to the relevant [JoystickCalibration ...] section(s) in FSUIPC7.INI. Note that, as a precaution, the trim value will never
be added to the relevant axis if the normal trim value is non-zero.

This new “helo trim” values are maintained in IPC offsets as follows:
OBBE 2 bytes 16-bit Helo Pitch Trim value, range —16383 to +16383
0C06 2 bytes 16-bit Helo Bank Trim value, range —16383 to +16383
Both of these can be written to for external program control.

Note that if you only require a pitch trim you can set

44

ApplyHeloTrim=Yes

Instead of ‘both’. The aileron/bank axis and trim values will then be left alone.

45

FSUIPC WASM Module

The FSUIPC WASM module is an FSUIPC add-on that is, by default, installed into the Community folder of MSFS
when you install FSUIPC7. This module provides FSUIPC7 with access to the aircraft's local panel variables (known as
Ivars or L:vars) and HTML variables (known as hvars or H:vars). As from FSUIPC version 7.3.7, the WASM features
in FSUIPC will be automatically enabled if the WASM module is installed in your Community folder. If you do not
want to use these features, you can disable the WASM by selecting the Disable option, which can be found under the
Add-ons — WASM menu entry. If the WASM menu is not visible, then the FSUIPC WASM folder fsuipc-lvar-
module was not found under your MSFS' Community folder.

Once enabled, the FSUIPC WASM module will allow you to use both Ivars (as in previous versions of FSUIPC) and
hvars (HTML variables) as well as to execute calculator code and use calculator code presets, such as thise provided by
MobiFlight (and included with FSUIPC7).

Using Lvars
Lvars are automatically discovered by the FSUIPC WASM module and made available to FSUIPC for use as in
previous versions of FSUIPC (i.e. FSUIPC4, FSUIPC5 and FSUIPC6), via Macros and lua facilities/functions.

Adding Lvars to Offsets
A facility is provided to add Lvars directly to FSUIPC offsets, for both reading and writing (i.e. updating an lvar value
by updating the offset). This facility is currently only available by editing your FSUIPC?7.ini file.

To add an lvar to an offset, you need to open your FSUIPC?7.ini file in an editor (e.g. Notepad++) and add a new section
to specify the Ivars you would like to add and the offset it should be added to. This can be a general section, which is
applicable to ALL aircraft, which can be achieved by adding the following section name:

[LvarOffsets]
However, as lvars are aircraft specific, it is usually better to add this as a profile specific section, in which case you need
to append your profile name preceded by a full stop. So, for a profile called 'TwinProps', for example, the new section
name would be:

[LvarOffsets.TwinProps]
Note that a profile LvarOffsets section will replace/supersede a general LvarOffsets section, not augment it.

Note that if you are using profiles in separate files, then you should place the [LvarOffsets] section in your profile
ni file.

Once you have created the section, you can add the lvars to the offsets you require by adding lines of the following
format to this section:
<index>=<lIvar name>=<size><offset>
where
- index is the index number of the entry, starting from 0 with a max value of 1023 (i.e. maximum of 1024 entries)
- Ivar name is the name of the lvar, optionally preceded by 'L:'
- size designates the size/type of the offset. This can be omitted and a size/type of 8 bytes/double will be used,
otherwise you can use the following designators and the lvar value (double) will be converted to the appropriate
size/type:
SB — signed byte (1 byte)
UB — unsigned byte (1 byte)
SW —signed word (2 bytes), use for signed short
UW — unsigned word (2 bytes), use for unsigned short
SD - signed double-word (DWORD) (4 bytes), use for signed int
UD - unsigned double-word (4 bytes), use for unsigned int
F — floating point number (4 bytes), use for float
You can edit this section while FSUIPC is running. If running, to load any changes, use the Add-ons — WASM —
Reload function.

Be aware that the specified offset must be boundary-aligned to the size of the offset. This means that

- if the size of the offset is is 8 bytes, the offset address must end in 0 or 8
- if the size of the offset is is 4 bytes, the offset address must end in 0, 4, 8 or C

46

- if the size of the offset is 2 bytes, the offset address must end in 0,2,4,6,8,A,C or E

As a simple example, to add the lvar XMLVAR_YokeHidden1 as a on/off boolean flag for the stock B747 to my B747
profile, I would add the following to my FSUIPC7.ini file:

[LvarOffsets.B747]
1=L :XMLVAR_YokeHidden1=UBOxA@00

Once an lvar has been added to an offset, you can use the offset for the Ivar value as you would any other offset. You
can also update the Ivar by updating the offset value, using, for example, one of the FSUIPC Offset Controls (see page
35), such as Offset Word Set, or Offset Byte Togglebits. Make sure that the control that you use matches the size of
the offset defined to hold the value. So, taking my previous example using the Ivar XMLVAR_YokeHiddenl, to
assign a button/switch to control this lvar via the offset I have assigned (A000), I would assign to the control Offset
Byte Togglebits, givubg A000 as the offset and 1 (or x1) as the parameter.

Using Hvars

Hvars need to be known by FSUIPC7 before they can be used. This is done by the use of a hvar file (i.e. a file with
extension .hvar), which can be located either the WASM persistent storage area (see following section for location
details) or under the FSUIPC WASM's modules folder. Hvar files are loaded if the filename of the hvar file (without the
extension) is a substring match to the currently loaded aircraft. If hvar files are found for the current loaded aircraft
under the persistent storage area, then these are used and any hvar files located under the WASM modules folder will be
ignored.

Some example aircraft specific hvar files are already provided and installed under the WASM modules folder. A
selection of hvar files is also installed (if selected to do so during the installation process) under your FSUIPC7
installation folder, under a folder called HvarFiles. To use these files, copy them to your WASM persistent storage are
and rename them so that the name is a substing match on the aircraft for which you wish to use them.

Multiple hvar files can be loaded per aircraft, but it is recommended to combine any hvar files that you wish to use for
an aircraft into a single hvar file for that aircraft.

There is currently a maximum limit of 584 hvars that can be used per aircraft. Of course, you can also remove
individual hvars from these files if they are not needed/used.

If you change the *.hvar file for the current aircraft while FSUIPC7 is running, then you can instruct FSUIPC?7 to reload
this file by using the Add-ons — WASM — Reload option. This will also re-scan for Ivars.

Note also that hvars to not have an associated value and can only be activated (or set, without a value). You can also test
for the existence and effect of an hvar before you add it to your aircraft' hvar file by using the Add-ons - WASM—
Execute Calculator Code.. menu option. To do this, wrap the hvar in the following way, for example:

(>H:A320 Neo CDU MODE MANAGED SPEED)

Once a hvar has been made know to FSUIPC7, it can be used in assignments either by using a macro file (see pages 35
& 36) or in a lua script by using the ipc.activateHvar(<hvarName>) function.

Issue with Lvar / Hvar names > 55 characters

Note that all lvar/hvar names used in FSUIPC7 are (currently) restricted to 55 characters (not including the terminating \
0). Lvars with longer names will be truncated to 55 characters, hvars with longer names will not be loaded. For lvars,
this should not be an issue unless there are multiple lvars with names > 55 characters in length AND the first 55
characters are the same. When this occurs, there is no way for FSUIPC to distinguish which lvar is being referred to
when the name is used (e.g. in the lvars to offsets functionality), and so the lvar with the lowest id will be taken.

I am not sure what to do about this at the moment, but hopefully its not an issue (as most, if not all, lvars should differ
in the first 55 characters). If you do fund this to be a problem, please post in the FSUIPC7 support forum and I can take
another look. One possibility, to allow such lvars to be used, would be to implement lua functions for reading/writing
Ivars based upon the id (rather than the name), but this solution may also be difficult to use (e.g. how do you know the
id of the lvar?).

47

Using Calculator Code Presets
A calculator code preset is a name assigned to a string of calculator code, which can also be parameterized. Calculator
code presets are made know to FSUIPC7 by two files that must be located in the root FSUIPC?7 installation folder. The
format of these files are identical, and must have the names events.txt and myevents.txt. You do not have to use both
files, but both will be loaded if present.

The format of the files is simple — each line must either be a comment, starting with '//', or define a preset in the format:
<PresetName>#<Calculator Code>
where
<PresetName> is the name of the preset (max 63 characters)
<Calculator Code> is the calculator code assigned to the preset name (max 1023 characters)
Note that this is the same format as used by the MobiFlight events.txt file, so the MobiFlight presets can be used
directly. This file will be installed automatically by the FSUIPC?7 installer, providing the ooption for this is checked
during installation (by default, this is installed). Please see the section below on the MobiFlight presets.

Two files are provided so that you can use the MobiFlight events.txt file directly, and use the myevents.txt file for your
own presets. You can then update the MobiFlight events.txt file at regular intervals (it is updated frequently!) without
affecting your own presets. However, it is highly recommended that you use the MobiFlight HubHop resource (see
MobiFlight Presets section below) for reporting any calculator code so that this can be shared by the community.

All preset names found in these two files will be available for direct assignment in both the Buttons and Keys Ul panels,
in a drop-down controls menu available by checking the 'Select for Preset' box. The preset name in the controls menu
will be changed to replace the ' ' character with a space, and each word will have a capitalized first letter. It is
recommended (but not prohibited) to NOT use repeat on preset assignments, either on button or key assignments. You
can also assign an axis to a preset ('Send to FS as normal axis) but this is not recommended/supported due to the rapid
update frequency of an axis.

The calculator code can also be parameterized by using the variable $Param. Any occurrence of such a string in the
calculator will be replaced by the parameter assigned to the preset (in the UI panels) before being executed.

Preset controls can be activated by name using offset 0x7C50 — see the Offset status document for details on how to use
this offset. You can also activate presets in lua scripts using this offset and the ipc.writeSTR function.

Preset controls can also be used via the general facility for sending any control to the FS at offset 0x3110 (also available
in unregistered versions). The control number for the preset will be the index number of the preset + 4194304
(0x400000). The index number of the preset will be the line number of the preset (once comment lines have been
excluded), starting from 0, with the line numbers for the presets in the myevents.txt file starting from where those in the
events.txt file finish (i.e. each preset is given an index number, starting at 0, in the order that they are loaded). As this
may be difficult to determine, it is recommended to only use the myevents.txt file if using this offset, and leave this file
uncommented, but better to use the preset name via offset 0x7C50.

MobiFlight Presets and the events.txt file

The Mobiflight presets, defined in the events.txt file is included by kind permissions granted by the MobiFlight team.
This file is generated from the MobiFlight HubHop resource (see https://hubhop.mobiflight.com/) which is a
community driven project. If using this file, and if using presets in general, it is recommended that you subscribe to this
resource and share/contribute your presets as well as reporting any errors that you find in any existing presets.

Note also that the MF events.txt included with FSUIPC?7 is the file exported from the MobiFlight HubHop web site,
and is updated with each FSUIPC7 release. However, as these presets are being continually updated, it will almost
certainly be out-of-date compared to the presets available on the HubHop site. If there are new or updated presets that
you would like to use, you can always download the latest events.txt file from that web site and use the file to replace
the one in your FSUIPC?7 installation folder (using the Export presets button — you need to create an account and login
to do this).

WASM module ini file and parameters
The WASM module takes its default settings from ini files. These are named FSUIPC WASM.ini and can be located:
1. Inthe WASM folder, under your Community/fsuipc-lvar-module folder
2. Inthe WASM persistent storage area, which is:
For Steam installs, in the following folder under your user account:
AppData\Roaming\Microsoft Flight Simulator\Packages\fsuipc-lvar-module\work

48

https://hubhop.mobiflight.com/

For MS Store installs, in the following folder under your user account:

AppData\Local\Packages\Microsoft.FlightSimulator_8wekyb3d8bbwe\LocalState\Packages\fsuipc-1lvar-
module\work

The FSUIPC WASM log file (FSUIPC WASM.log) can also be found in this location.

Parameters found in location 2 (WASM persistent storage) will take president and overwrite any parameters found in
the first location. A default ini file is installed with the WASM and can be found in location 1. It is recommended to
leave this file as is, and copy to your persistent storage area and modify as and when needed from there.

The ini file contains one section, [General], and takes the following parameters:

LogLevel=Info: defines the logging level of the WASM. Possible values are: Disable, Info, Debug, Trace,
Enable

LogType=File: defines where the log goes to, with possible values: File, Console, Both

StartEventNo=0x1FFFO0: this defines the initial event number string of the gauge events used fot
communication between the WASM module and FSUIPC7. Currently, 6 event numbers are used starting at
O0x1FFFO0, so events Ox1FFF- through to Ox1FFF5. Any event numbers from 0x11000 through to Ox1FFFF are
available. If using other WASM modules, they may also be using events in this range. You need to make sure
that the events that FSUIPC7 is using are unique and not used by other WASM modules. This parameter is
therefore provided so that the event numbers used by the WASM module and any of its clients can be changed.
If this parameter is changed, you MUST also set this parameter for any client using the FSUIPC WASM module,
including FSUIPC?7. This can be done by setting the same ini paramater in your WASM clients. For doing this in
FSUIPC7, see the section below (FSUIPC7 WAPI ini parameters).

LvarUpdateFrequency=6Hz: lvar values can be updated asynchronously by the WASM and pushed to the the
clients, or can be updated on request from a WASM client. This parameter controls the frequency of these
updates, and can take one of the following values: Off, Second, 6Hz, Frame, VisualFrame.

Lvar value update requests from clients are ignored unless this parameter is set to Off. If set to Off, make sure
that one (and only one) WASM client (e.g. FSUIPC?7) is set to request lvar values to be updated. For doing this
in FSUIPC?7, again see the section below (FSUIPC7 WAPI ini parameters).

LvarScanDelay=5: a delay has been implemented between when determining that a new aircraft has been
loaded and the start of scanning for Ivars for the loaded aircraft, currently set at 5 seconds. If you find that you
get more lvars when forcing the reloading of Ivars (available from the Add-ons WASM menu) after the initial
load, you can try increasing this delay.

Note that lvars can be created after the initial aircraft loading and during the lifetime of the aircraft session, so its
is normal to get more lvars if you re-scan at some point after the initial loading of the aircraft.

UseAirLocForHvars=No: similar to the FSUIPC7 ini parameter UseAirLocForProfiles, setting this
parameter to Yes will change the hvar matching from using the aircraft name to using the folder name of the
folder under which the currently loaded aircraft's aircraft.cfg file is located. This can provided a better match for
different versions of the same aircraft, such as when using different liveries.

RemoveLvarsWhenParked=No: when set to Yes, the WASM will attempt to remove all named variables when

you go back to the MSFS main menu. This is to prevent Ivars from a previous aircraft showing when you chage
aircraft. However, thus doesn't currently seem to have much affect (YMMYV).

49

WAPI ini parameters
The FSUIPC?7.ini file contains a specific section for parameter relating to the WASM interface used by FSUIPC, called
the WAPI (the WASM Application Programming Interface) and named accordingly as /WAPI]. This section accepts the
following ini parameters:
EnableWAPI=No: defines whetther the WASM interface is enabled or not. This item can be controlled using
the Add-on — WASM menu entry Enable / Disable.

StartEventNo=0x1FFF0: defines the event number range used by the WASM. See the documentation for this
parameter in the WASM module (previous section) for further details.

LogSeparately=No: defines whether a separate log file should be used for logging messages from the WAPL
Set to Yes to use a separate log file, which will be called FSUIPC WAPIlog, and will be located in the
FSUIPC?7 installation folder.
Note that there currently seem to be some issues when logging to a separate file, so it is suggested to not use this
parameter for the time being.

LvarUpdateFrequency=0: defines the update frequency of the lvar values maintained in FSUIPC7. By default,
this is set to 0 and the Ivar values are updated asynchronously by the WASM module (by default, on each

Frame).

UseSimConnection: you can use this parameter to instruct FSUIPC7 to ise a specific simconnect connection
(from your SimConnect.cfg file). By default, the default local connection (-1) is used.

LogLevel=Info: defines the logging level of the WAPIL Possible values are: Disable, Info, Debug, Trace,
Enable

50

APPENDIX 1: Do more with your joystick!

This section is from a contribution graciously made by an intrepid FSUIPC user. I hope you will find it useful. Apart
from formatting to fit this current document I've left it exactly as originally submitted. It was written for P3D but also
applies to FSUIPC7 for MSFS.

During the past flightsimming years, the PC flight simulators have become more and more professional and more
complex. Very sophisticated airplanes can be downloaded for free or purchased for a reasonable price. Many of them
includes all bells and whistles in a way that “flightsimming” is no “game” any more, and for many among us it becomes
more and more a “real flight simulator” as used in the real flying world. Some have built very real looking cockpits with
instrument panels with every switch and control in its right place; others like myself are still using their joystick and
keyboard.

As I have a small computer desk, it is not so handy to use the keyboard and my joystick together especially for
flightsimming. A cockpit is overloaded with devices to be set, numerous switches have to be used, many settings must
be executed via keyboard entries and with a joystick with a scrubby eight buttons for all the remaining commands, it
seems to be impossible to do this in any user-friendly way

In P3D4 and previous simulators, some, but not all, commands have already been to the joystick buttons by default and.
these can modified by the Assignments options in P3D. By selecting a command from a list and defining a button of
your joystick, the activation of this button will execute the selected command. There is also an option that repeats the
command as long as the button is pushed.

I have an 8-button joystick but the simple default joystick programming of the eight buttons was not sufficient anymore.
I need more commands, more sophistication on my joystick. So I searched for a solution: because my joystick was
absolutely necessary the only option is then to eliminate keyboard entries as much as possible.

Lucky there are still some smart guys on this world, guys like Pete Dowson. Pete is well known for his excellent
FSUIPC.DLL add-on module for MS flight simulators. This module makes it possible to correct some flaws in FS and
to enhance FS, and must be considered as ‘a must have’ for the whole FS community. But FSUIPC includes also many
features that the modal user can use to his advantage. One of these features for licensed FSUIPC users is “joystick and
keyboard button programming”.

Originally, Pete has provided this feature for owners of Goflight and Epic devices but this can also be used for your
joystick too! I have written this guideline on the request of Pete because we realize that only a few FS users use this
powerful tool as intended. I will try to explain the marvellous things you can do with this superb programming tool. A
few weeks ago I didn't realized it myself, but now, oh boy!

I will explain some programming tricks I’'m using in the button programming of my own Sidewinder Force Feedback
Joystick 2 from Microsoft.

The following documentation is needed before you can start the programming:
First: A fully user-licensed FSUIPC installed in your copy of P3Dv4.

Second: the “FSUIPC for Advanced Users” manual [the one now before you]. Please, read very carefully the chapters
concerning keyboard and joystick button programming, especially the section about compound buttons.

Third: the “List of FSX and P3D Controls” document which will have also been installed for you in your FSUIPC
Documents folder — or, better, the TXT file version generated for you in that same folder by FSUIPC which then
matches your installed version of P3D4 (“Controls List for P3D4 Build xxxxx”)

To be sure that all commands will be executed the way you have programmed them, almost all the default programming
of the buttons in Flight Simulator must be removed. | have removed them all, except the Hat button programming.

I use the two buttons on the left of the joystick pedestal to set conditions for the selection of commands assigned to the
six other buttons. I also include the tricks you can use if you would use three buttons to set conditions.

Let us start with the first case. The two buttons used to define a condition, are labelled “7” and “8” on the joystick. The
lowest button label on the joystick is being “1”. For programming however the button numbering starts with button “0”
for the button with label 1, “1” for button 2 etc. And so, again in our case, the conditions are programmed by button “6”
and “7”. Four possibilities are created by the button status, pushed or released, of a combination of two buttons:

button 6 and 7 are both up,

button 6 is down and button 7 is up,
button 7 is down and button 6 is up
button 6 and button 7 are both down.

el S

51

The status of these two buttons together with an action of one of the other six buttons can be used to program a flight
simulator command. In fact we can now assign up to 4 commands per button or 24 commands to the six remaining
buttons (even 48, because we can program a function if one of the “action” buttons is going down and another when the
same button goes up again)

The following can be done with a combination of three buttons:

button 5, 6 and 7 are all three up
button 5 is down, 6 and 7 up

button 6 is down, 5 and 7 are up
button 7 is down, 5 and 6 are up
button 5 and 6 are down, button 7 is up
button 5 and 7 are down, 6 is up
button 6 and 7 are down, button 5 is up
button 5, 6 and 7 are all three down

NN R BPD =

There are now 8 possibilities in the combination and 5 remaining buttons which gives 40 and up to 80 commands that
could be assigned to these 5 buttons.

As specified in the section on Button programming, earlier, two kinds of commands can be generated: use the button
combination to simulate a hit of a key combination on the keyboard, or use the joystick button combination to generate
an “internal” FS command. A list of all the possibilities for these commands can be found in the “List of FSX and P3D
Controls” document.

Let us take a few rules out of a button programming as examples:

3=CP(-0,6)(-0,7)0,3,C65615,0

9=CP(+0,6)(-0,7)0,3,C65769,0

In these both cases the active button (the button that is generating the command) is button 3 (with label 4 on the
joystick). In the first case the command “65615” is generated when button 6 and 7 are up and button 3 is going down.
C65615 will generate an “Elevator Trim Up”, the same command as the default joystick button programming. The “CP”
syntax defines that the command will be only executed once, even if the button 3 is holding down.

However, by holding down the “6” button (“7” on the MS joystick) and activating button 3, FSUIPC will generate a
“65769, Propeller Pitch Increment”, command. This command is not a default joystick button command, but a
command that, if it was not programmed that way, had to be entered by a button combination on the keyboard.

By defining the button combination with a “CR”, the command will be repeated until the action button is released again,
which is in our application more advantageous. And in fact, the repeat function is used on both commands:

2=CR(-0,6)(-0,7)0,2,C65607,0
3=CR(-0,6)(-0,7)0,3,C65615,0

8=CR(+0,6)(-0,7)0,2,C65771,0
9=CR(+0,6)(-0,7)0,3,C65769,0

The buttons “2” and “3” are used here to trim up/down (rule 2 and 3) with button 6 and 7 up. The same buttons, but now
with button 6 activated while button 7 is up, controls the propeller pitch.

I assigned another two commands to the same “2” and “3” buttons; also I programmed the combination with the 7
button for “Mixture Incr” and “Mixture Decr” in rule 19 and 20:

19=CR(-0,6)(+0,7)0,2,C65775,0
20=CR(-0,6)(+0,7)0,3,C65777,0

I must emphasise here that FSUIPC uses the status (up or down) of the buttons in the compound combinations (+/-j,b)
(+/-3,b) for a condition, but the changes of the button status, in fact “the pushing” or “the releasing” of a joystick button
for the activation of the command, which is valid for one whole scan, meaning the check of all following button
programming rules. This is important to remember.

On the MS joysticks, button 2 and 3 are very well placed for using them as increment and decrement functions and a lot
of commands could be attached to them. However, we have used already 3 of the four condition statuses. So if we only

52

use the combination of two buttons and like to attach much more commands to these buttons we have to find another
way.

First of all, with all preceding versions up to and including 3.14, FSUIPC allowed compound combinations of the status
of up to two buttons, and not more than two buttons, to create a condition. In the newer versions the status of 16 buttons
can used to create a condition—but the explained tricks will still be valid.

In fact, the button programming does not work directly with the buttons because FSUIPC stores the status of a button in
a “flag”, an internal storage space, during a process cycle or scan of all programmed button rules. The programmed
conditions use these flags to define the result status of the programmed condition.

FSUIPC saves now the status for up to 32 buttons of up to 16 joysticks, which means 512 flags for 512 buttons!

From these 512 flags, only 8 are used for the 8 buttons of my joystick and the rest of these flags likes to be wasted
space. Not entirely! Because Peter has provided some commands to set, toggle or reset the flags, even if they are not
“connected” to a button. So an instruction can be used to set or reset a flag and to use the flag afterwards in a condition.
And because there is no connection to an existing button, the status of the flag is entirely dependent of the programmed
instructions that are given for that particular flag.

What we are going to do now is to make ONE flag reflecting the condition of the TWO buttons, so that this flag can be
used together with the status of another button, to create another condition. To do this, I use the following tricks:

; Flag 10 follows keys (-6 AND -7)
0=CU(-0,7)0,6,C1003,10
1=CU(-0,6)0,7,C1003,10

When FS is started and the module FSUIPC.DLL is activated, all flags are reset. To be sure about the setting of flag 10
we have to “play a bit” with buttons 6 and 7. Playing a bit with these buttons at the beginning of our flight does not
generate commands, because both buttons are “dead” buttons and they will not sent commands to FS (this is the same as
the shift keys on your computer keyboard which are doing nothing on their own but only functioning together with
other keys). The above rules are assuring that flag 10 will be set when both buttons are up or are going up:

Rule 0: when button 7 is up, and button 6 goes up, set flag 10
Rule 1: when button 6 is up, and button 7 goes up, set flag 10

The following rules are setting flags when one of the both buttons is going down. In these cases however we have to
reset flag 10:

; Flag 11 follows keys (+6 AND -7)
2=CP(-0,7)0,6,C1004,10

3=CP(-0,7)0,6,C1003,11
4=CU(F+0,11)0,6,C1004,11

; Flag 12 follows key (-6 AND +7)

5=CP(-0,6)0,7,C1004,10
6=CP(-0,6)0,7,C1003,12
7=CU(F+0,12)0,7,C1004,12

The explanation of these programming rules is:
Rule 2: if button 6 goes down and button 7 is still up, reset flag 10.

Rule 3: if button 6 goes down and button 7 is still up, set flag 11 (remember that the action of the
active button can be seen by all the following rules in the same scan).

Rule 4: when flag 11 is set and button 6 goes up, reset flag 11.
Flag 11 follows now the status of button 6 (up or down) while button 7 is up.
Rule 5: if button 7 goes down and button 6 is still up, reset flag 10.
Rule 6: if button 7 goes down and button 6 is still up, set flag 12.
Rule 7: when flag 12 is set and button 7 goes up, reset flag 12.
In this case flag 12 follows the status of button 7 (up or down) while button 6 is up.

53

Now follows a more tricky part because we want to make a “follower” for button 6 and 7 down, (if we wouldn’t use a
combination with both buttons down, then, in any case, we have to include rule 8 and 11 to be sure of a resetting of
flags 11 and 12 when the conditions in the above rules aren’t valid any more):

; Flag 13 follows key (+6 AND +7)

8=CP(+0,6)(F+0,11)0,7,C1004,11
9=CP(+0,6)0,7,C1003,13
10=CU(F+0,13)0,7,C1004,13

11=CP(+0,7)(F+0,12)0,6,C1004,12
12=CP(+0,7)0,6,C1003,13
13=CU(F+0,13)0,6,C1004,13

Even if we do our very best, it’s nearly impossible to push two buttons at the same time, so we have to disable the
resulting flag setting of these rules in rule 8 and 11 because the program loop will detect that the conditions as specified
in rule 3 or 6 will be satisfied before the second button is activated:

Rule 8:

Rule 9:

Rule 10:

Rule 11:

Rule 12:
Rule 13:

If button 6 is down and flag 11 is set (because we were faster with button 6 as with button 7)
and button 7 goes down, reset flag 11.

If button 6 is down and button 7 is down, set flag 13.

If flag 13 is set and button 7 is released, reset flag 13. This programming rule acts if button 7
is released before button 6. In that case you would think that rule 3 is back in the game, but
that's not true: FSUIPC doesn't react on the status of the “active” key but on the change of
his status: “button down” is actually meaning “button goes down”, “button up” is actually
“button goes up”. And because there is no change in the status of button 6, rule 3 is not
activated.

If button 7 is down and flag 12 is set (because we were faster with button 7 as with button 6)
and button 6 goes down, reset flag 12.

If button 7 is down and button 6 goes down, set flag 13.

If flag 13 is set and button 6 is released, reset flag 13. This programming rule acts if button 6

is released before button 7. Here also the same remark as for rule 10, but now regarding rule
6.

Now these flags can be used to assign real Microsoft Flight Simulator functions to the remaining buttons:

: IF -6 AND -7 (Flag 10)

14=CR(F+0,10)0,0,C65588,0 ;repeat break
15=CP(F+0,10)0,1,C65570,0 ;toggle gear
16=CR(F+0,10)0,2,C65607,0 ;repeat trim pitch up
17=CR(F+0,10)0,3,C65615,0 ;repeat trim pitch down
18=CP(F+0,10)0,4,C65758,0 ;increment flaps
19=CP(F+0,10)0,5,C65759,0 ;decrement flaps

; IF +6 AND -7 (Flag 11)

20=CP(F+0,11)0,0,K192,1 ;voice key for CS727

21=CP(F+0,11)0,1,C65751,0 ;toggle landing lights

22=CR(F+0,11)0,2,C65771,0 ;repeat decr. mixture

23=CR(F+0,11)0,3,C65769,0 ;repeat incr. mixture
24=CP(F+0,11)(F+0,20)0,4,C66390,0 ;AND +F20 toggle wing fold (Drag chute on CS F104)
25=CP(F+0,11)(F-0,20)0,4,C66391,0 ;toggle tail hook (Drag chute on CS Mig21)
26=CP(F+0,11)0,5,C65589,0 ;toggle air break

A little more about rule 24 and 25: I am a fan of Captain Sim airplanes, but the CS team uses a different command for
the drag chute on the Mig21 as for the drag chute on the Starfighter. I decided to use a flag (which I program later on) to
generate a different command for the same button, depending on the status of that flag. Here is another trick that I am
also using for the Yak 3 of Captain Sim airplanes: the default animation of the rear-view mirror uses two different
commands for the activation and deactivation of the mirror. This is a rather weird because this is a toggle command.
The next trick allows me toggle the mirror with one button:

54

36=CP(F+0,13)(F-0,30)0,0,C66294,0 ;Incr Concorde Visor (activate rear-view mirror)
37=CP(F+0,13)(F+0,30)0,0,C66295,0 ;Decr Concorde Visor (deactivate rear-view mirror)
38=CU(F+0,13)0,0,C1005,30 ;Toggle flag 30

The combination of these three rows is used to switch the button command from incr to decr and visa versa, each time
the 0 button is activated while button 6 and 7 are both down.

The next button programming rules in the INI file are:

:IF (-6 AND +7) = F12

27=CP(F+0,12)0,1,C65858,0 ;toggle pitot-heat
28=CR(F+0,12)0,2,C65777,0 ;repeat mixture decrement
29=CR(F+0,12)0,3,C65775,0 ;repeat mixture increment
30=CP(F+0,12)0,4,K83,8 ;keyboard “S” (next view)
31=CP(F+0,12)0,5,K83,1 ;keyboard “SHIFT-S” (previous view)

: IF(+7 AND +8) = F13

32=CP(F+0,13)0,0,C66224,0 ;autostart engines
33=CP(F+0,13)0,1,C66293,0 ;toggle avionics on/off
34=CR(F+0,13)0,2,C65880,0 ;increment heading bug
35=CR(F+0,13)0,3,C65879,0 ;decrement heading bug

By using the combination of three buttons is the following can be accomplished:

; Flag 10 follows keys (-5 AND -6 AND -7)

0=CU(-0,6)(-0,7)0,5,C1003,10
1=CU(-0,5)(-0,7)0,6,C1003,10
2=CU(-0,5)(-0,6)0,7,C1003,10

; Flag 11 follows keys (+5 AND -6 AND -7)

3=CP(-0,6)(-0,7)0,5,C1004,10
4=CP(-0,6)(-0,7)0,5,C1003,11
5=CU(F+0,11)0,5,C1004,11

; Flag 12 follows key (-5 AND +6 AND -7)

6=CP(-0,5)(-0,7)0,6,C1004,10
7=CP(-0,5)(-0,7)0,6,C1003,12
8=CU(F+0,12)0,6,C1004,12

; Flag 14 follows key (-5 AND -6 AND +7)

9=CP(-0,5)(-0,6)0,7,C1004,10
10=CP(-0,5)(-0,6)0,7,C1003,14
11=CU(F+0,14)0,7,C1004,14

; Flag 14 follows key (+5 AND +6 AND -7)

12=CP(+0,6)(F+0,12)0,5,C1004,12
13=CP(+0,6)(-0,7)0,5,C1003,13
14=CU(F+0,13)0,5,C1004,13

15=CP(+0,5)(F+0,11)0,6,C1004,11
16=CP(+0,5)(-0,7)0,6,C1003,13
17=CU(F+0,13)0,6,C1004,14

; Flag 15 follows key (+5 AND -6 AND +7)

>

55

18=CP(+0,7)(F+0,13)0,5,C1004,13
19=CP(+0,7)(-0,6)0,5,C1003,15
20=CU(F+0,15)0,5,C1004,15

21=CP(+0,5)(F+0,13)0,7,C1004,11
22=CP(+0,5)(-0,6)0,7,C1003,15
23=CU(F+0,15)0,7,C1004,15

; Flag 16 follows key (-5 AND +6 AND +7)

18=CP(+0,6)(F+0,12)0,7,C1004,12
19=CP(+0,6)(-0,5)0,7,C1003,16
20=CU(F+0,16)0,7,C1004,16

21=CP(+0,7)(F+0,13)0,6,C1004,13
22=CP(+0,7)(-0,5)0,6,C1003,16
23=CU(F+0,16)0,6,C1004,16

56

Appendix 2: About the Aircraft Specific option and “ShortAircraftNameOK”

I have left this Appendix in for reference as I think it is still useful, but please note that this ini
parameter is no longer available, and FSUIPC7 automatically uses
ShortAircraftNameOK=Substring — this cannot be changed.

Note: this is a contribution from a user, to whom thanks is expressed.

There are these three choices in FSUIPC settings:
ShortAircraftNameOK=No
ShortAircraftNameOK=Yes
ShortAircraftNameOK=Substring

Result: To get exactly the same settings for AXES, BUTTONS, KEYS and CALIBRATION for each plane repaint
or variant.

The Short Aircraft Name in FSUIPC refers to the name in the Aircraft.cfg file under “title”
For example: Aerosoft DHC Beaver. There might be 7 variants or repaints

aircraft.cfg \(flightsim.X)\title= Aerosoft Beaver DHC-2A 55-0682
aircraft.cfg \(flightsim.X)\title=DHC-2A C-GSKY Beaver

aircraft.cfg \(flightsim.X)\title= Aerosoft DHC-2A C-GSKY modern
aircraft.cfg \(flightsim.X)\title=Beaver DHC-2A DQ-GEE

aircraft.cfg \(flightsim.X)\title=DHC-2A DQ-GEE modern

aircraft.cfg \(flightsim.X)\title= Aerosoft DHC-2A N299EE

aircraft.cfg \(flightsim.X)\title=Beaver Aerosoft DHC-2A N299EE modern

Edit the FSUIPC.ini file:
Scenario 1: If “ShortAircraftNameOK=No”

Presuming that you have already assigned the axes, keys and buttons and calibrated the joystick for one of
the above variants or repaints: in order to get the same settings for the rest of the above variants/repaints
of the Aerosoft Beaver you would need to edit the FSUIPC.ini file and add 4 separate entries for each title
name (exactly as above) under [Axes], [Buttons], [Keys], [Joystick Calibration] to ensure that all of the
settings were exactly the same, ie 28 entries in all. Pretty tedious in fact— | had over 40 variants/repaints
of this plane so | would have need 160 entries in the FSUIPC.ini file.

[Axes. Aerosoft Beaver DHC-2A 55-068]

[Buttons. Aerosoft Beaver DHC-2A 55-068]

[Keys. Aerosoft Beaver DHC-2A 55-068]
[JoystickCalibration.Aerosoft Beaver DHC-2A 55-068]
[Axes. DHC-2A C-GSKY Beaver]

[Buttons. DHC-2A C-GSKY Beaver]

[Keys. DHC-2A C-GSKY Beaver]
[JoystickCalibration.DHC-2A C-GSKY Beaver]

[Axes. Aerosoft DHC-2A C-GSKY modern]

[Buttons. Aerosoft DHC-2A C-GSKY modern]

[Keys. Aerosoft DHC-2A C-GSKY modern]
[JoystickCalibration.Aerosoft DHC-2A C-GSKY modern]
[Axes. Beaver DHC-2A DQ-GEE]

[Buttons. Beaver DHC-2A DQ-GEE]

57

[Keys. Beaver DHC-2A DQ-GEE]
[JoystickCalibration.Beaver DHC-2A DQ-GEE]

[Axes. DHC-2A DQ-GEE modern]

[Buttons. DHC-2A DQ-GEE modern]

[Keys. DHC-2A DQ-GEE modern]
[JoystickCalibration.DHC-2A DQ-GEE modern]

[Axes. Aerosoft DHC-2A N299EE]

[Buttons. Aerosoft DHC-2A N299EE]

[Keys. Aerosoft DHC-2A N299EE]
[JoystickCalibration. Aerosoft DHC-2A N299EE]]

[Axes. Beaver Aerosoft DHC-2A N299EE modern]

[Buttons. Beaver AerosoftDHC-2A N299EE modern]

[Keys. Beaver Aerosoft DHC-2A N299EE modern]
[JoystickCalibration.Beaver Aerosoft DHC-2A N299EE modern]

Scenario 2:

If “ShortAircraftNameOK=YES”

12 entries would be required to make sure all settings were the same

[Axes. Aerosoft
[Buttons. Aerosoft
[Keys. Aerosoft

[JoystickCalibration.Aerosoft]

Explanation:

1. “Aerosoft” would pick all those entries in the title STARTING with “AEROSOFT”, but NOT Aerosoft

[Axes. DHC] [Axes. Beaver]

[Buttons. DHC] [Buttons. Beaver]
[Keys.DHC] [Keys.Beaver]
[JoystickCalibration.DHC] [JoystickCalibration.Beaver]

in any other part of the title.

2. “DHC” would pick all those entries in the title STARTING with “DHC” but not those with “DHC” in

any other part of the title

3. “Beaver” would pick all those entries in the title STARTING with “Beaver” but not those with
“Beaver” in any other part of the title

Scenario 3: If “ShortAircraftNameOK=Substring”

4 entries only, i.e. “DHC” in the FSUIPC.ini file would result in all variants having exactly the same settings —

“DHC” is common to all titles.

To summarise:

[Axes. DHC]

[Buttons. DHC]

[Keys. DHC]
[JoystickCalibration.DHC]

ShortAircraftNameOK=No

One entry for each different title in the aircraft.cfg file

ShortAircraftNameOK=Yes

Picks up the starting part of the title in the aircraft.cfg file

g

ShortAircraftNameOK=Substrin

Picks up any part of the title in the aircraft.cfg file

58

|

Title in aircraft.cfg file ShortAircraftNameOK=

No Yes Substring
title=Airbus A321 Separate entry for “Airbus”: Would “A321”: Any
title=Airbus A321 Paint2 each title apply to all entries variant with A321
title=Airbus A321 Paint4 starting with Airbus. in the title.
title=Airbus A321 Paint5
title=Boeing 737-400 “Boeing” would apply | “Paint” Any
title=Boeing 737-400 Paintl to all entries starting | variant with
title=Boeing 737-400 Paint2 with Boeing. PAINT in the title.
title=Boeing 737-400 Paint3
title=Boeing 737-400 Paint4
title=Boeing 747-400 “737”: Any
title=Boeing 747-400 Paintl variant with 737
title=Boeing 747-400 Paint2 . .
title=Boeing 747-400 Paint3 in the title.
title=Boeing 777-300
title=Boeing 777-300 Paint1
title=Boeing 777-300 Paint2
title=Boeing 777-300 Paint 3

Explanation: ShortAircraftNameOK=Substring Any text that is in any position in the “title” located in the
aircraft.cfg file that is inserted in the ini file as above will result in the same settings for those aircraft. For
instance choosing “737” ie [Axes.737] etc would result in all planes with 737 in the title having the same
settings. Likewise choosing “Boeing” would cover all variants/repaints with Boeing in the title

To summarise if you had 20 variants/models/repaints with all different titles you would need 20
entries per section (80 in all) in the ini file. Using ShortAircraftNameOK=Substring you could cut
this back to just 1 entry per section (4 in total).

59

APPENDIX 3: Handling VRInsight serial devices in FSUIPC

Introduction
First, please note that this section is all about FSUIPC's support for these serial port devices from VRInsight:

"MCP Combi", "M-Panel", "CDU 2", "CDU", "Micro Prop Pit", "Micro Jet Pit", "Radio
Stack”, "Prop Pit", "Jet Pit", "Flight Monitor", "MFD", "GPS5", "MCP2 Boeing", "MCP2 Airbus"

These have become quite popular, being pretty good value for money. You can get a lot of functionality in a compact
package. However, they are not recognised by Windows as "Human Interface Devices" (HIDs) and certainly not as
"joysticks", and are therefore not normally seen in FSUIPC for Button or Switch programming.

In fact they are serial "COM" port devices, using USB connections with an FTDI chip based interface with a serial/USB
port driver. Their interface to FS is managed by VRInsight's own driver "SerialFP2" (or a later replacement).

For many straightforward uses, SerialFP2 does a good job. However, it doesn't provide the flexibility for every purpose
and with more and more specialised aircraft and other add-ons for FS doing their "own thing", a way to increase the
functionality of the VRI devices was felt needed. This is especially the case where the devices have to resort to sending
many keypress combinations, which can get rather fraught when so many other programs are also doing this.

The opportunity to make provisions in FSUIPC for the VRInsight range arose after the implementation of the serial port
handling Lua library, "com", because now FSUIPC already contained a multi-device multi-threaded mechanism for
easily reading from, and writing to, serial COM port devices.

Problems and Solutions

Compared to the GoFlight implementation in FSUIPC, which utilises a library module (GFDev.dll) provided by
GoFlight for this purpose, there are some complications. With GoFlight the devices can, to some extent, be shared
between the GoFlight driver assignments and FSUIPC assignments (though admittedly this can provide complications
with displays and indicators). The VRInsight situation is rather different. There is no easy way for a user-level program
like FS+FSUIPC to share the use of the same COM port with the VRInsight driver (SerialFP2). It could probably be
done using something like the Eterlogic VSPE program as a "splitter", but this is not a general solution for users.

Therefore it first looked like it would have to be an either/or: you either use SerialFP2, or you use FSUIPC probably
with a Lua plug-in to program the displays. That would means the plug-in must do a lot of work, much of it probably
beyond the means of most users.

However, the Eterlogic VSPE ("Virtual Serial Port Emulator") does offer a good solution. It can provide any number of
virtual serial port "Pairs": that is two 'pretend' COM ports which are linked. For example, COM9 and COM10 might be
a "Pair". Whatever a program writes to COM9 can be read by another program on COMI10 and vice versa. This is a
facility I already promote the use of with my GPSout links via WideFS, for moving map applications.

The use of Virtual Serial Port pairs allows FSUIPC to sit between the VRInsight device and the VRInsight driver
(SerialFP2). Then FSUIPC can divert some or all buttons and switches to uses determined in the FSUIPC options, and it
can provide optional Lua plug-ins with opportunities to hook into both switch inputs from and display outputs to the
devices.

Okay. So, if you are still interested, let's move on to the instructions for achieving this:

Setting up the virtual serial ports
First, please download the Eterlogic VSPE program:

http://www.eterlogic.com/Products.VSPE.html

You will need to purchase a key for this program. ($25 U.S.). After installing it and registering it (you have to cut and
paste the long key!), proceed as follows:

1. From the Device menu, select Create.

2. In the Device Type drop-down, select Pair, then press Next and Finish.

3. Repeat steps 1 and 2 for the number of VRI devices you want to connect this way.

60

http://www.eterlogic.com/Products.VSPE.html

4. Note down the pairs made. For example:

COMS <= COM6
COM7 < COMS

5. In the File menu, select Save As, and save the configuration to some place with a file name you will know. For

example, in C:\ with a name like
ComPairs_56_78
to suit the configuration example I gave above.

6. Now close VSPE. By default the pairs will be destroyed. That’s fine.

7. Find the short-cut to VSPE which the installer placed on your desktop. Right-click it, select Properties, then at
the end of the stuff in “Target”, and after a space add:
-minimize —hide_splash C:\ComPairs_56_ 78.vspe

where you put your own path and configuration filename in place of ‘C:\ComPairs_56_78’

8. Now you have a choice. You can have this program start when Windows starts—just drag the short-cut, or a
copy of it, into the Windows Startup folder. That’s what I would do. The existence of all those extra COM
ports does no harm when you are not using them, and you will be annoyed if you forget to start the program
before you want to run FS.

Note that you must not start it by simply using a Run parameter in FSUIPC7 INI’s [Programs] section. This
will be too late for FSUIPC to open one end of the link for SerialFP2 to connect.

Configuring FSUIPC to handle VRI devices

Now we must edit the FSUIPC7 INI file. Find it in the FSUIPC installation folder—if you have Windows set to hide
known filetypes it will look like just ‘FSUIPC7’ with a file type of “Configuration Settings”. Load it into a text editor
such as NotePad—do not use WordPad or a word processor!

Add a completely new section:

[VRInsight]
1=<device>, <driver>
2=<device>, <driver>

Where those <device> and <driver> entries are serial port names. You need one line here for each VRI device. The
order doesn’t matter. The <device> entry gives the real serial port name for the device, and the <driver> entry gives a
virtual serial port name.

You can assign any virtual pair to any device, but just one pair to one device. Then, for each device, you enter one of
the pair’s port names as <driver> here. The other one of the pair will be used by SerialFP2—you shouldn’t need to
worry about that if SerialFP2 is set to ‘Auto’, as it will find it.

As an example, supposing I have one VRI device on COM3 and another on COM9. With my two pairs as set in the
example on the previous page I could have:

1=COM3, COM6
2=COM9, COMS8

Then SerialFP2 would connect to the first via COMS5 and the second via COM7. Here are the connections which will
be made:

SerialFP2 € 2> COMS5 € > COM6 € = FSUIPC € > COM3 € - VRI Devicel
SerialFP2 € 2> COM7 € 2 COMS € = FSUIPC € > COM9 € = VRI Device2

Note that, if you didn’t need SerialFP2 to drive your device, if it only had buttons and switches you were assigning in
FSUIPC, or you were driving it with a Lua plug-in instead of SerialFP2, then you need not have a ‘Pair’ for it and you
would omit the second port in the [VRInsight] parameters. I don’t think this is likely to apply very often.

61

Running SerialFP2

Whilst you are editing the FSUIPC7.INI file, you should consider how you will be running SerialFP2. It must not be
run before FSUIPC has grabbed the device’s real port, or it will get it and prevent FSUIPC’s access. Running it
manually after starting FS is awkward for obvious reasons.

The best way is to run it from FSUIPC. For that you need it adding to the INI file’s [Programs] section (add the section
too if you haven’t got one). For example, for two devices I would have this:

[Programs]
Runl=READY,CLOSE,d: \VRInsight\SerialFP2\SerialFP2.exe
Run2=READY,CLOSE,d: \VRInsight\SerialFP2\SerialFP2.exe

For two devices you need two copies of SerialFP2 running, and so on. By putting ‘READY" here I am stopping it
running before FSUIPC has got the port. CLOSE simply asks FSUIPC to close it when FS closes.

One final thing. Until you are sure you have things right, you might want to enable some special Logging in FSUIPC
which will show what is going on in the SerialFP2 — FSUIPC -- VRI device chain. To log of all of the inputs and
outputs, from all parties, you can use the Log — Custom feature, and enter the value 4.

Okay. Now you should be ready. Make sure your VRI devices are switched on, then run FS.

If all goes well your VRI devices should initialise and start working normally. The FSUIPC Log file will, soon after the
initialisation phase, show entries like this:

VRI port 1 "COM5" opened
VRI driver port 1 "COM2" also opened

For each pair listed in the [VRInsight] section of the FSUIPC7.INI file, and then, as each device is seen by the
SerialFP2 driver (though probably getting mingled, as they are all multi-threading):

VRI COM2 ---> CMDRST [from VRI Driver]
VRI COM5 <--- CMDRST [to Device]
VRI COM2 ---> CMDCON [from VRI Driver]

VRI COM5 <--- CMDCON [to Device
VRI COM5 ---> CMDCON [from Device]

VRI COM2 <--- CMDCON [to VRI Driver]

VRI COM5 ---> APLMAST+ [from Device]

VRI COM2 <--- APLMAST+ [to VRI Driver]

VRI COM2 ---> CMDFUN [from VRI Driver]

VRI COM5 <--- CMDFUN [to Device]

VRI COM5 ---> CMDFMER [from Device]

VRI FMER ("MCP Combi") detected on port COMS5
VRI COM2 <--- CMDFMER [to VRI Driver]

Note that FSUIPC here recognized “FMER” as being the MCP Combi.

If the SerialFP2 driver does not find the device it may need helping. Try setting it on '"AUTO' and making it retry. Once
you have it working it sohuld be fine next time.

Programming buttons, switches and knobs

Once you've reached this stage you should find you can detect and program most of the VRInsight knobs and switches
within FSUIPC's Buttons and Switches Tab. They'll have joystick numbers 256 and over. Some dials will look like 4
buttons—fast and slow in each direction. But some don't have the fast mode.

FSUIPC's Buttons tab only reacts to buttons when they switch from "off" to "on". For VRInsight devices this generally
means two presses on buttons—unlike normal joystick buttons, holding them down does nothing useful. There's no
indication available of this. You press and release for one indication, then do the same again for the next. Each time you
do this it changes the button state from "off" to "on" and vice versa, alternately. If you want a button to do something
every time you press it you need to program both the press and the release. Similar considerations usually apply to dials,
which look "on" on one click and "off" on the next, and so on.

At present the radio buttons and knobs are not programmable in FSUIPC. They seem to operate quite well enough as
they are. They will be overridable in Lua plug-ins, for those among you who wish to get into more advanced
manipulation of the devices, but they aren't suitable for general re-allocation.

62

Once a button, knob or switch is programmed in FSUIPC it is hidden from SerialFP2 and, in fact, the log.

What else? What about the displays?

Good questions.

Everything that SerialFP2 can do with a device can also be done with a Lua plug-in using the facilities offered by the
new "com" library and, with the aid of some extra parameters which go into the FSUIPC7.INI file, this can work with
Serial FP2 taking its part too if you'd rather not have to re-program everything yourself.

The Lua package provided with FSUIPC contains full details of both the Lua programming side and how the FSUIPC
INI file can be edited to make this all run seamlessly and automatically. Two relatively simple examples are included
and explained:

e one to allow the MCP Combi Speed display and adjustment to work correctly in Mach mode as well as IAS
mode, and

e one to swap the use of Inches for the altimeter BARO setting on the M-Panel for millibars (or hectoPascals if
you prefer).

If you own the MCP-Combi or M-Panel devices you might want to try one of those now. Instructions are included in
the Lua ZIP package.

63

APPENDIX 4: Running FSUIPC7 on an FS Client PC

It is now possible to run FSUIPC7 (v7.2.13 and later) on a client PC, that is, a 2nd PC where MSFS is not installed.
This should allow FSUIPC clients to be ran on the client PC and allow them to communicate to the FS without the need
for WideFS/WideClient. Note that this DOES NOT replace or duplicate the functionality provided by WideFS. When
FSUIPC?7 runs on a client PC, it will maintain its own offset area distinct from that of the offset area used by FSUIPC7
on the FS machine. However, most offsets should contain the same data, as they are populated by the data received
from the FS, but be aware of this if/when writing to user offsets (e.g. using lua).

Note also that you do not have to have FSUIPC7 running on the FS machine to run FSUIPC7 in the client machine.

The following functionality in FSUIPC7 will not work (or is not available) in FSUIPC7 when ran on a client machine:
- no installer: you need to manually install/copy FSUIPC7 to the client machine
- no possibility of sending key presses to the FS (key presses CAN be received)
- no auto-start or auto-connection

To have FSUIPC7 running on a client machine, please follow the steps indicated below.

1. Configuring SimConnect on the MSFS computer
Locate your MSFS2020 SimConnect.xml file. For steam installs, this should be under
Your User Account\AppData\Roaming\Microsoft Flight Simulator
and for MS Store installs under:
Your User Account\Local\Packages\Microsoft.FlightSimulator 8wekyb3d8bbwe\LocalCache

Open the file in an editor, and add a Global (remote) IPv4 port by adding the following entry, replacing 'Your Local
MSFS PC Address' with the actual IP address:

<SimConnect.Comm>
<Descr>Global IP Port</Descr>
<Disabled>False</Disabled>
<Protocol>IPv4</Protocol>
<Scope>global</Scope>
<Address>Your Local MSFS PC Address</Address>
<MaxClients>64</MaxClients>
<Port>7421</Port>
<MaxRecvSize>4096</MaxRecvSize>
<DisableNagle>False</DisableNagle>

</SimConnect.Comm>

You can also change the port number, but this MUST match the port number defined in the SimConnect.cfg in your
client PC (see below). Note that you also may need to open this port in any firewalls that you may use (although I did
not have to do this when I configured in my LAN).

2. Install FSUIPC?7 in the client machine
To install FSUIPC7 on a client machine, create an FSUIPC7 folder (preferably not under Documents, Program Files, or
any other windows-protected folder) and copy across the following files from your MSFS computer:
FSUIPC7.exe
FSUIPC?7 key (if using a registered version)
You can also copy across your FSUIPC7.ini file, but it may be better to start afresh with this in your client PC.

64

3. Configuring SimConnect on the Client computer
To configure SimConnect on the client PC, create a file called SimConnect.cfg in your FSUIPC?7 installation folder on
the client machine with the following contents:

[SimConnect]

Protocol=IPv4

Address=Your Local MSFS PC Address
Port=7421

MaxReceiveSize=4096

DisableNagle=0

where Your Local MSFS PC Address is the same address as used in the client configuration (and the port also must,
of course, be the same as the one used there).

4. Configure FSUIPC?7 to run on the Client computer
If you have copied across your FSUIPC7.ini, open this in an editor and removed any unwanted assignments/profiles.
If you have not copied across your FSUIPC7.ini, run FSUIPC7 once and exit - this will create a default FSUIPC7.ini
file for you.
Open this file in an editor (e.g. Notepad++). Under the [General] section, add the following ini parameters:
RunningOnClientPC=Yes
UseSimConnection=0

and under the [WAPI] section (if using the FSUIPC7 WASM module on the MSFS computer) - create if necessary, also
add the following:
UseSimConnection=0

And that is all!

To use FSUIPC7 on the client machine, you must manually connect once MSFS is up and running.

Published by John Dowson, January 2023
Support forum: John Dowson's Support Forum

65

https://forum.simflight.com/forum/183-fsuipc7-msfs/

	FSUIPC7
	For Advanced Users
	FSUIPC Versions 7.3.16, January 2023
	Contents
	Options in the FSUIPC7.INI file
	Other general user options
	Less used technical options
	AUTOSAVE: INI-file only options
	Logging facilities
	Monitor facilities
	JoyNames
	Profiles
	Button Programming
	Keyboard Programming
	Additional “FS” Controls added by FSUIPC
	Adding Simulator variables (simvars) to FSUIPC offsets
	Macro Controls
	Gauge local variable access (L:vars), by macro

	Add-on Custom Events
	Automatic running of Macros and Lua plugins
	Programs: facilities to load and run additional programs
	Assignment of additional axis controls
	(Reverser, Aileron and Rudder Trims, and Cowl Flaps)
	Multiple Joysticks for Multiple Pilots
	HELICOPTER PITCH and BANK TRIM facilities
	FSUIPC WASM Module

	APPENDIX 1: Do more with your joystick!
	Appendix 2: About the Aircraft Specific option and “ShortAircraftNameOK”
	APPENDIX 3: Handling VRInsight serial devices in FSUIPC
	Introduction
	Problems and Solutions
	Setting up the virtual serial ports
	Configuring FSUIPC to handle VRI devices
	Running SerialFP2
	Programming buttons, switches and knobs
	What else? What about the displays?

	APPENDIX 4: Running FSUIPC7 on an FS Client PC

